
Abstract

Typically, users submit very simple search queries to
digital document data collections. Often these queries can
result in extremely broad answers or answers in which
document relevance is hard to assess. Our group has
developed a suite of tools which build sophisticated
indexes to document collections. These tools can be used
to provide cues to help users formulate more effective
queries. In order to present these cues and manage the
process of query refinement, we have developed a Java-
based client server system which uses these indexes and
tools.

One of the most powerful parts of our system is its ability
to recognize domain-specific multi-word names and
terms, using heuristic methods, and to index these
vocabulary items in such a way that we can look up
vocabulary items that commonly are related to the
original query terms. This system responds to an initial
query by suggesting additional items that the user can use
to focus the query.

1. Introduction

Finding important and relevant documents in an online
document collection is becoming increasingly difficult as
online document collections and search engines
proliferate. The problem is further complicated when the
searcher is an infrequent user of a particular search
system, but has urgent business or technical needs that he
wishes to satisfy without extensive training or experience
in the use of these systems and without the use of a
search intermediary.

There have been a number of approaches to solving these
problems in recent years. For example, [Fowler, Wilson,
and Fowler, 1992] have described a multi-window
document interface where users can drag terms into
search windows and see relationships between terms in a
graphical environment. Local feedback was utilized by
[Buckley, et al., 1996] and [Xu & Croft, 1996] who also
utilized local context analysis using the most frequent 50
terms and 10 two-word phrases from the top ranked
documents to perform query expansion. [Schatz. et al.,
1996] describe a multi-window interface that offers users
access to a variety of published thesauruses and computed
term co-occurrence data.

Several groups have addressed the challenge of providing
a simple user interface suitable for infrequent use by non-
technical users. Envision [Nowell, et al., 1996] is one
such interface although it was designed primarily for use
in searching technical journal collections. Another
approach, termed Scatter/Gather [Hearst & Pedersen,
1996], emphasized clustering of similar documents into
several subgroups in response to the initial query.
Fireworks [Hendry & Harper, 1996] presents a unique
scattered screen environment called SketchTrieve which
allows manipulation of queries, documents, authors and
results as separate, moveable windows. We have
previously reported [Cooper & Byrd, 1997] a web
browser-based multi-screen system for navigating
through Wall Street Journal articles. In this paper, we
describe an extremely simple user interface, suitable for
the users of the document collection we describe in
Section 3.

When translating an information requirement into a
query for a document retrieval system, a user must
convert concepts involved in the requirement into query
terms which will match terms found in documents in the
data base. Creating a successful query against a
document collection involves solving the "vocabulary
problem" described in [Furnas, et al., 1987]. The problem
consists of several interrelated issues, including
precision, ambiguity, and synonymy. A query about
“IBM Credit Corp.” or “IBM Global Network” is more
precise than a query about “IBM,” and will find better
documents, assuming that one of the former is part of the
user's information requirement. In some document
collections, the query term “wireless” could be
ambiguous, meaning either “cellular telephone,” or
“Motorola's Wireless Data Group.” A more focused
query would use one of the non-ambiguous forms.
Finally, a query about “on-line analytical processing”
would be greatly improved if it also included the
synonymous form “OLAP.”

Of course, all of these query improvements rely on
knowing what vocabulary items are potentially relevant,
because they actually occur in the document collection.
They also rely on it being easy for the user to find them
when they are needed for improving a particular query.
The Talent tools described in the next section help us to

OBIWAN - A Visual Interface for Prompted Query Refinement

James W. Cooper and Roy J. Byrd

IBM Thomas J. Watson Research Center, jwcnmr@watson.ibm.com, byrd@watson.ibm.com

Submitted for presentation at HICCS-31- Copyright © 1998, by the IEEE

2

meet the first of these two prerequisites. The user
interface devices described in Section 3 address the
second.

2. Talent Tools

We have developed a suite of text analysis tools, called
“Talent” (for “Text Analysis and Language ENgineering
Tools”), which allow us to use the text in a document
collection to build lexical resources suitable for solving
the vocabulary problem when querying that collection.
Before queries begin, the Talent tools are used to extract
domain-specific vocabularies, “context thesauruses,” and
relationships from all the documents in the collection.
Further tools are used to organize this material into
“lexical networks.” Here, we describe these lexical
resources in more detail.

Vocabularies

Talent vocabularies consist of “vocabulary items.” Each
item comprises a “canonical form” and zero or more
additional “variant forms.” Depending on the item, the
canonical form is the form which is the least ambiguous,
the most explicit, the longest, the lemma, etc., among all
of an item’s forms. In addition, Talent contains facilities
for recognizing acronyms and abbreviations and for
including them among the variants of their full forms.
Vocabulary items have a category associated with them,
indicating whether the item is an ordinary word, a
domain term, or a name denoting a person, place,
organization, etc.

For the prompted query refinement application (among
others), vocabulary items also contain occurrence
statistics. An important statistic, described by [Prager,
1994] is the “information quotient” (or IQ), which
characterizes an items distinctiveness within the
document collection. Specifically, a vocabulary item’s
IQ, expressed as a number between 0 and 100, gives an
indication of how effective the item would be at
distinguishing among documents when the item is used
as a query term. We often find it useful to interpret a
vocabulary item’s IQ as a measure of its “importance”
within the domain.

Context Thesauruses

A context thesaurus is a device which, given a probe
consisting of a single word, a query, or an entire
document, will produce a ranked list of vocabulary items
that are related to the probe. The information used to

accomplish this is basically information about the co-
occurrence of vocabulary items in the sentences and
paragraphs of the document collection. Specifically,
using an idea inspired by the “phrase finder” procedures
described in [Jing and Croft, 1994], the context thesaurus
consists of a an ordinary information retrieval system’s
document index. The key innovation is that the
documents are “pseudo documents” derived from the
original document collection. Thus, there is one pseudo
document for each vocabulary item and it contains
contexts in which the item occurs within the collection.
In the prompted query refinement system, the IBM
NetQuestion query system [IBM, 1997] is used to index
and query the pseudo document collection.

Unnamed Relations

Our view of unnamed relations is based on the fact that
vocabulary items which often appear together are likely
to be related. Furthermore, the frequency with which two
items appear together can be used as the basis for a
measure of the strength of the relationship. The current
implementation of our unnamed relation extractor uses
the context thesaurus. For a pair of vocabulary items, we
determine the extent to which one item occurs in the
context of the other by querying the context thesaurus for
each item. When a query to the context thesaurus is a
vocabulary item, the rank of a vocabulary item on the
resulting hitlist can be interpreted as a numerical value of
the strength of association between the query item and
the hitlist item. If each item appears on the other’s hitlist
with a rank that exceeds some threshold and if the ranks
are fairly close, we assume that there is a symmetric
relationship between the two items. The strength of that
relationship is computed from the ranks assigned by the
context thesaurus.

It is also worth noting that the context thesaurus itself
implicitly contains asymmetric unnamed relations. A
relationship is symmetric if each of two vocabulary items
appears on the other’s context thesaurus hitlist. It is
asymmetric if only one of them appears on the other’s
hitlist. As an example, if the name of an arbitrary
employee of IBM were used as a context thesaurus query,
the resulting hitlist is likely to contain “International
Business Machines”. The converse is mostly likely not
true, except for a handful of names such as “Louis V.
Gerstner.” Thus, there would be a symmetric
relationship between Gerstner and IBM but only
asymmetric relations between IBM and most other
employees. Of course, the distinction between
symmetric and asymmetric relations is a fluid one and

3

depends on the text in the document collection and the
thresholds set during the extraction process.

Named Relations

Talent extracts named relations between vocabulary items
by exploiting grammatical and orthographic
constructions in which such relationships are typically
expressed in English. These constructions include
appositives, possessives, parentheticals, copular clauses,
coordination, etc. The named relation extractor operates
in “discovery mode.” That is, it extracts not only the
related vocabulary items but also the names of the
relationships from the text, based on the positions that
they occupy within the defining text constructions. For
this reason, the relationships, as well as the vocabulary
items, are domain-specific.

Lexical Networks

In our current prompted query refinement application,
named and unnamed relations are combined into a series
of database tables comprising a “lexical network.” In
lexical networks, vocabulary items are the nodes and
relations are the links. A lexical network is, in effect, the
repository of most of the material extracted from a
document collection by Talent tools. They are used
within the query refinement server when the user
interface client requires lexical information for
navigation and refinement activities.

When vocabulary items and relationships among them
are used in applications, it is often natural and useful to
ignore the distinction between the (symbolic) items
themselves and the real-world concepts to which they
refer. This is certainly the case with prompted query
refinement. Although it is only symbolic information
that is extracted from the documents, maintained in our
lexical resources, and presented at the user interface, the
value of that information is that it elicits query
modifications from the user based on his or her grasp of
conceptual relationships in the real world. The
usefulness of our tools and interfaces derives from their
ability to inform or remind the user of conceptual links
relevant to the document collection being queried and to
the current query.

3. The OBIWAN User Interface

The Giga Information Group Document Collection

We undertook this research as a joint effort with the Giga
Information Group, a provider of Information
Technology (IT) reports for businesses. Their information
delivery model is to use web pages to deliver major
reports (called Planning Assumptions) and shorter
reports, (called Customer Queries) as web pages which
are posted to their site on a daily basis. In addition, they
provide selected press releases and articles from the Dow
Jones News service on IT companies. The snapshot of the
data we used for this study consisted of 700 Planning
Assumptions, 5400 Customer Queries, and about 5000
press releases and 5000 news articles. The overall
document collection contained about 140 megabytes of
text.

The problem is, of course, that this constantly changing
information eludes simple attempts to organize and
categorize it and unexpected connections between these
reports may eventually develop since they are written by a
number of consultants. Therefore, when a customer logs
into the Giga service and simply searches the collection
for information on a given keyword or topic, he may miss
useful, related information that a simple search does not
provide. Further, as the document collection grows, it is
much more difficult to find the most useful documents
without actually reading large numbers of them.

Observations of large numbers of users working with
search engines reveal that most new or inexperienced
users tend to compose queries made up of one or two
words, rather than using qualifying terms that might help
limit or focus the query. Studies by the Prodigy on-line
service revealed that most queries average 1.8 words and
that virtually no one seeks to use either the “advanced”
query formulation or looks at the help screens. In
addition, according to [Selzer, et al., 1997] the average
lengths of English queries to the AltaVista system range
from 1.8 words for queries about places and travel to 3.7
words for queries about world news events.

Moreover, since every search engine has unique
characteristics, infrequent users are much less likely to
know how to use the sophisticated features of these
engines. Many of the users of the Giga information
service are business people rather than technical experts,
hence they are less likely to have time to learn the
intricacies of constructing multiple term queries with
Boolean qualifiers.

Thus, we set out to design a simple “one button” user
interface, named OBIWAN (for “One Button Interface

4

With Associated Network”), that would suggest
additional query terms based on the lexical network, and
make it easy to use these terms to refine the query. While
the main interface panel actually has 3 buttons (Search,
Clear, and View), the intent of the interface is preserved:
the Search button performs different search functions
depending on the information which is currently
displayed.

Construction of the Data Files

We constructed an index of the more than 16,000
documents using the IBM NetQuestion document search
and retrieval system. Next, we constructed a context
thesaurus for each of the four document collections and
combined them into a single context thesaurus, consisting
of one NetQuestion search index. We used a standard
relational database to store the lexical network, consisting
of vocabulary items together with named and unnamed
relationships among them. Finally, we constructed an
“items database,” also using a relational database,
containing vocabulary items, documents, and information
about which items occur in which documents. For
convenience, we also included the title and abstract for
each document in the Giga collection, in order to make it
easier to display search results.

Design of the User Interface

In Figure 1, we illustrate the basic OBIWAN navigation
display. Here, the user can enter a search word or phrase
and click once on the Search button. This, then, displays
items, ranked by IQ, which are actually found in the
collection as the labels of check boxes. Note that since the
Context Thesaurus indexes the text found near all of the
items it identifies, the user does not need to enter an
exact match for a item in order for the thesaurus to
suggest useful related items.

Note further that nearly all of these are multi-word items,
which usually rank much higher by IQ than single word

items.

Figure 1. Items suggested by the Context Thesaurus
after clicking on the Search button.

Clicking on a Search button a second time causes the
program to search the collection using the same query.
The titles of the top 5 documents that were found are
shown at the bottom of Figure 2.

5

Figure 2. Top documents selected by searching the
collection using just “Wireless data access.”

The user can carry out a more focused search, however, if
he selects one or more of the items suggested by the
Context Thesaurus. As each of them is checked, it is
added to the query field at the top of the form, and any
un-checked items are removed from the query field.
Then, if the user clicks on Search a second time, the
program searches using this refined query, and in general
produces considerably improved results. This is shown in
Figure 3.

While OBIWAN has a superficial resemblance to the
Visual Live Topics display provided by the AltaVista
search service, see, for example, [DeJesus, 1997] we note
that that technology provides only single words and not
necessarily those in the current collection, while we index
and suggest vocabulary items consisting of single- and
multi-word phrases which actually exist in the collection.

The user can also narrow the scope of the query terms
suggested further by adding one or more items to the
query field and having OBIWAN recalculate the
neighboring items. For example, we added
“Communications product” to the search text and
searched for new co-occurring items. The markedly
different result is shown in Figure 4.

Figure 3. Top documents selected by enhancing the
original query with the checked item.

Figure 4. A new set of Context Thesaurus items
generated when “communications product” is added
to the query.

Related Items

Vocabulary items which have unnamed or named
relations to other items are represented in blue in the
checkbox list. Right-clicking on any such blue-
highlighted item (shown in Figures 2 through 4 as lighter
gray) displays a list of surrounding items that are closely
related, as shown in Figure 5.

6

Figure 5. A list of items closely related to “hybrid
wireless PBX.”

Then the user can click on any of these items as well and
add them to his query. In order to make this window as
easy to use as possible, it pops up if he clicks the right
mouse button anywhere on a blue-highlighted checkbox,
and stays up as long as the mouse hovers over it. It
disappears as soon as the mouse moves out of the
window.

Graphical Relations Between Items

It is also possible to view the relationships between items
graphically as a network of named and unnamed
relations as shown in Figure 6 [Tunkelang, Byrd and
Cooper 1997]. The user can also select any item and add
it to the query using the Add button.

Figure 6. A plot showing named and unnamed
relationships around “wireless data” graphically.

Many of the items in this display can be further expanded
by double clicking on them to show additional, more
distant relationships. This provides a way of navigating
through the lexical network in a way which is difficult to
represent in any other fashion.

The Items Database

The items database is a group of three tables, one of
document filenames, one of vocabulary items and one of
the document keys versus the item keys. Further, the
item relations are encoded as a table of relation keys and
a table of relation names. From this database, we can
easily construct a table of all of the items that were found
in a document, even though the items are stored by
canonical form, and display them sorted into any useful
order. In our user interface, we allow the user to right-
click on any document title and see a display of the
names and domain terms found in that document. Here,
also, the checkbox provides a way to add items to the
original query, in a type of user-controlled relevance
feedback. This is illustrated in Figure 7.

Figure 7. The top vocabulary items found in a
document titled “What is the danger in using terminal
emulation in wireless data projects?”

We quickly note that the items shown in Figure 7 provide
an extremely concise summary of the contents of that
document. These items provide a good summary partly
because they are ranked by IQ, and thus are some of the
most selective items for that particular document. Adding
any selected items from this list to the initial query will
find more documents “like this one,” a common
requirement in document retrieval systems.

Experiments in Representing Lexical Neighborhoods

Using the items database, OBIWAN can allow the user to
find all of the documents containing an individual item.
We refer to this document cluster as the item’s “lexical
neighborhood.” Further, if an item can be found in a
large number of documents, it is possible to find the
intersection of several sets of items to reduce the total
number of documents to only those documents which
contain all of the items of interest. This is, of course, just

7

a Boolean conjunction of the documents containing the
selected items.

It is interesting to note that if we simply display the most
selective (Top IQ) items in this fashion, they will be of
limited use, since they by definition occur in very few
documents. Instead, we must display items that we know
occur in several documents in order to determine an
intersection of documents containing several such items .

Figure 8 shows the first step in this navigation process, in
a slightly modified OBIWAN interface. First, the user
enters a simple search phrase, here “Java.” Then he
clicks on Search to find all the items in the collection
which contain that string. These are displayed in the left-
hand list box. Clicking on any phrase in that list box
produces a list of titles of documents which contain the
phrase.

Figure 8. An interface for selecting documents on the
basis of the items they contain. The selected phrase
“Java and JavaScript” appears in the 4 documents
shown.

Now, if the user clicks on any one of these documents, he
can see the items it contains as shown in Figure 9.

Figure 9. The items contained in the top, highlighted
document are show in the bottom right list box.

Finally, the user can see which documents contain any
combination of items by clicking on them. In Figure 10,

the user has selected “Sybase” and “Netscape.” The
document display list then changes to show those
documents which contain both of these items. This
provides a powerful way to navigate through the concept
space surrounding the collection by viewing the lexical
neighborhood of the intersection of several items of
interest.

Figure 10. Documents in the upper list box contain
both “Sybase” and “Netscape.”

Construction of the OBIWAN Program

The program is written in Java 1.1 [Arnold and Gosling,
1996] as a stand-alone client application running on
Windows 95 and a server running on Windows NT. The
server consists of a Java 1.1 program whose methods are
called using Java Remote Method Invocation [Cooper,
1997; Orfali and Harkney, 1996]. The server, in turn,
makes queries to one or more of 4 separate indexes:

1. The NetQuestion document index

2. The Context Thesaurus

3. The Lexical Network

4. The Items Database

The server accesses the NetQuestion search engine using
Java to spawn an external query process and receive the
results through the standard-out port. The search of the
context thesaurus amounts to a search of a second
NetQuestion index. The server uses JDBC, Java’s
database connectivity system and the JDBC-ODBC
Bridge [Cooper, 1997] to access the lexical network and
the items database. A Java object is returned for each
resulting item.

4. Results and Discussion

Testing of this methodology and of the user interface has
been carried out primarily as a by-product of testing of
the technology. We have obtained both comments about
usability and suggestions fo enhancing search flexibility.

8

Anecdotally, in about 80% of the cases where a user has
made an elementary query to OBIWAN, he has improved
its accuracy by including one or more of the items
suggested by the context thesaurus. Since the items which
are shown actually occur in the collection, they help the
user locate actual documents on the subject he has
selected. Since the items are discovered automatically,
they are not perfect, and some of them must be ignored
by the user. Our experience has been that users act as
extremely good filters for these “noise” items and do not
find a few of them objectionable as long as some are
useful and enhance their ability to locate documents of
interest.

Users reported that the context thesaurus allowed them to
navigate through metadata associated with the query and
allowed them to learn about the subject without reading
any of the articles. They noted that the suggested items
were intrinsically interesting, beyond any role they played
in query refinement.

In another test associated with TREC-6, we observed that
users expected that the items proposed by the Context
Thesaurus be closely related to the original query. This,
of course, depends on whether such terms exist in the
collection that was indexed. We also observed that as
users became more familiar with the system, they tended
to pose longer, more conceptual queries which were then
not always easily resolved. For example, when trying to
discover information about ferry accidents, they would
pose a query of the form “ferries that have sunk killing
more than 100 people.” Processing of such conceptual
queries is the subject of further work.

In conclusion, one the main difficulties in gleaning
information from an ever growing collection is the
necessity for the user to read large numbers of documents
to find out if they are relevant to his interests. The
OBIWAN system obviates this requirement by presenting
the user with keywords to narrow the search to useful,
existing documents and by allowing him to view the
keywords in a document directly.

Finally, the ability to select peripherally related keywords
allows the user to explore new avenues of interest, based
purely on the occurrence of these keywords, thus
expanding his technical knowledge without going
through the undirected browsing and searching that
“web surfing” usually requires.

Applications to Other Media

Clearly, the techniques we describe here are intended to
enhance the searching of text collections. Work in other
groups on categorizing video data from news reports

indicates that most of the same techniques would apply
there, as well. Such reports contain large quantities of
descriptive text or other metadata produced, for example,
by closed captioning, which can be indexed just as we
describe here.

In addition, when documents contain hypertext links to
multi-media objects, the text surrounding the links
usually contains descriptions of those objects. We intend
to experiment with our techniques to determine whether
these descriptions may be exploited to enhance search for
multi-media objects.

Future Work

We have applied categorization techniques based on
nearest-neighbor classifiers [Duda and Hart, 1973;
Stanfill and Waltz, 1986] to map a reduced set of existing
Giga-assigned categories to new and old documents, thus
providing the ability to suggest related categories that
users might look into for information of interest.
Incorporating these categories as well as the lexical
neighborhood approach into a single interface will be the
subject of further study.

We are also experimenting with using data mining
techniques to analyze vocabulary item cooccurrence data,
as an alternative to using the context thesaurus, for
deriving unnamed relations.

Acknowledgments

We’d like to acknowledge the continuing, helpful
cooperation of Bela Labovitch, Susan Funke and Rhoda
Nafziger of the Giga Information Group, and Andrew
Singleton and Tom Laramee of Cambridge Interactive.
We are also deeply indebted to our talented colleagues at
IBM Research. They include Mary Neff, Yael Ravin and
Misook Choi, who built the vocabulary extractors, Herb
Chong and Aaron Kershenbaum, who originated many of
our dictionary subsystems, Daniel Tunkelang, who
designed and built the graphical layout algorithms with
suggestions from Mark Wegman, Birgit Schmidt-
Wesche, who made a number of usability suggestions,
and Alan Marwick, who inspired us to turn our ideas into
a working system.

References

Apte, C., Damerau, F. and Weiss, S.M. Automated
learning of decision rules for text categorization. ACM
Transactions on Information Systems,12(3) 223-251,
1994.

Arnold, Ken and Gosling, James, The Java
Programming Language, Addison-Wesley, 1996.

9

Bates, Marcia J. “Human, Database, and Domain
Factors in Content Indexing and Access to Digital
Libraries and the Internet,” Allerton, 1996.

Brajnik, G., S. Mizzaro, and C. Tasso "Evaluating
User Interfaces to Information Retrieval Systems: A
Case Study on User Support" in Proceedings of the
19th Annual ACM-SIGIR Conference, 1996, pp. 128-
136.

Buckley, C., Singhal, A., Mira, M & Salton, G. (1996)
“New Retrieval Approaches Using SMART:TREC4. In
Harman, D, editor, Proceedings of the TREC 4
Conference, National Institute of Standards and
Technology Special Publication.

Byrd, R. J., Ravin, Y., and Prager, J. "Lexical
Assistance at the Information-Retrieval User
Interface," Proceedings of the SDAIR (Symposium on
Data Analysis and Information Retrieval), UNLV,
1995.

Duda, R. O, and Hart, P.E. Pattern Classification and
Scene Analysis, John Wiley and Sons, New York,
1973.

Cooper, James W., Principles of Object Oriented
Programming Using Java 1.1, Ventana, 1997.

Cooper, James W. and Byrd, Roy J. “Lexical
Navigation: Visually Prompted Query Expansion and
Refinement.” Proceedings of DIGLIB97, Philadelphia,
PA, July, 1997.

DeJesus, Edmund X., “The Searchable Kingdom,”
Byte June, 1997, 92NA.

Fowler, Richard H., Wilson, Bradley A., and Fowler,
Wendy A.L. “Information Navigator: An information
system using networks for display and retrieval.”
Report NAG9-551, No.92-1. Department of Computer
Science, University of Texas, Pan American,
Edinburg, TX.

Furnas, G. W., T, K., Landauer, L. M. Gomez, and S.
T. Dumais “The Vocabulary Problem in Human-
System Communication,” in Communications of the
ACM, vol. 30, no. 11, November 1987, pp. 964-971.

Hearst, Marti A. and Pedersen, Jan O., “Reexamining
the Cluster Hypothesis: Scatter/Gather on Retrieval
Results,” Proceedings of the 19th Annual ACM-SIGIR
Conference, 1996, pp. 76-84.

Hendry, David G. and Harper, David J., “An
Architecture for Implementing Extensible Information
Seeking Environments,” Proceedings of the 19th

Annual ACM-SIGIR Conference, 1996, pp. 94-100.

IBM. A description of IBM’s NetQuestion text search
and retrieval technology, on the World-Wide Web at
http://www.software.ibm.com/data/mediaminer, 1997.

Jing, Y. and W. B. Croft “An association thesaurus for
information retrieval,” in Proceedings of RIAO 94,
1994, pp. 146-160.

Orfali, Robert and Harkney, Dan. Client/Server
Programming with Java and Corba. John Wiley and
Sons, New York, 1996.

Maarek, Y.S., “Software Library Construction from an
IR perspective,” in SIGIR Forum, fall 1991, 25:2, 8-
18.

Nowell, Lucy Terry, France, Robert K, Hix, Deborah,
Heath, Lenwood S., and Fox, Edward A. “Visualizing
Search Results: Some Alternatives to Query-Document
Similarity.” Proceedings of the 19th Annual ACM-
SIGIR Conference, 1996, pp. 67-75.

Prager, John. IBM Research. Private communication,
1994.

Ravin, Y. “Disambiguating Proper Names in Text,” in
Proceedings of MIDDIM 96, International Seminar
on Multimodal Interactive Disambiguation, Col de
Porte, August 1996.

Ravin, Y. and Wacholder, N. 1996, “Extracting Names
from Natural-Language Text,” IBM Research Report
20338.

Schatz, Bruce R, Johnson, Eric H., Cochrane, Pauline
A and Chen, Hsinchun, “Interactive Term Suggestion
for Users of Digital Libraries.” ACM Digital Library
Conference, 1996.

Seltzer, Richard, Ray, Eric J., and Ray, Deborah S. The
AltaVista Search Revolution., Osborne-McGraw Hill,
1997.

Spink A, A. Goodrum, D. Robins, and M. M. Wu
"Elicitations During Information Retrieval:
Implications for IR System Design" in Proceedings of
the 19th Annual ACM-SIGIR Conference, 1996, pp.
120-127.

Spink, A. "Term Relevance Feedback and Query
Expansion: Relation to Design" in Proceedings of the
17th Annual ACM-SIGIR Conference, 1994, pp. 81-
90.

Stanfill, C. and Waltz, D. “Toward Memory-based
Reasoning,” Communications of the ACM, 29(12)
1213-1228, 1996.

Tunkelang, D. D. "A Practical Approach to Drawing
Undirected Graphs", Technical Report CMU-CS-94-
161, Carnegie Mellon University, June 1994.

10

Tunkelang, D. D., Byrd, R. J., and Cooper, J. W.,
“Lexical Navigation: Using Incremental Graph
Drawing for Query Refinement,” Graph Drawing 97.

Xu, Jinxi and Croft, W. Bruce. “Query Expansion
Using Local and Global Document Analysis,”
Proceedings of the 19th Annual ACM-SIGIR
Conference, 1996, pp. 4-11

