
A Knowledge Management Prototype
Mary S. Neff and James W. Cooper

IBM Thomas J. Watson Research Center

 MaryNeff@watson.ibm.com, jwcnmr@watson.ibm.com

Background

As organizations become increasingly competitive, they recognize the capital inherent in
the accumulated knowledge of its members. In a rapidly growing organization, it
becomes ever more important to encapsulate and store this knowledge and invent ways to
make it available to newer members of the team. We describe a Knowledge Management
prototype, dubbed Avocado, a project that grew out of the need to provide sophisticated
document analysis as an aid to retrieving more useful data from a technical document
collection. It has evolved from earlier incarnations with different names (Cooper &
Byrd, 1998; Neff & Cooper, 1999).

Avocado combines a number of components and sub-components, several of which have
already become available in IBM products, for example, Intelligent Miner for Text.
These components use, among other things, Natural Language Processing technology and
corpus-based NLP techniques in the foreground and databases constructed using NLP
technology in the background.

We have applied previous versions of the prototype to several collections of information
technology (IT) documents and have developed a compact user interface for representing
the results. Avocado represents a more ambitious effort in that it contains some new
components and it is applied to a collection of “real data” that is more heterogeneous in
form and content than any of our previous collections.

Avocado

The problem of finding important and relevant documents in an online collection
becomes increasingly difficult as documents proliferate. Typically, searching for
information in a document collection amounts to refining a query and then scanning a
large list of documents returned by the search engine to determine their relevance, and
then searching the documents for the desired information. Avocado’s NLP and corpus-
based NLP techniques assist the user both on the “query end” of the process, with
Prompted Query Refinement (Cooper & Byrd 1997, 1998) and Lexical Navigation and
on the “document viewing” end with Automatic Summarization, Keyword Extraction,
and Active Markup (Neff & Cooper, 1999).

These several components rely on a number of more basic technologies, all of which run
in the background when the documents are indexed for the search engine. They share the
same data structures and work together to identify and index names, multiword terms,
abbreviations, relations (named and unnamed) and count their frequency in the collection.

Prompted Query Refinement

Once the user enters a query, Prompted Query Refinement uses the index of names,
terms, and relations (the collection vocabulary and the Context Thesaurus) to display to
the user other related or possibly related terms that co-occur in the collection with the
terms in the query. By selecting some of these related terms to be added to the query, the
user can refine the query directly, without having to think up or type in any more items.

Lexical Navigation

In addition to the terms proposed by the Context Thesaurus, the system also retrieves
terms from the collection database that are related to those terms in the query and can
display the nature of the relations between these terms. These relationships can be both
named relations (“CEO of,” “makes,” “is located in”) (Byrd and Ravin, 1999) and
unnamed relations, where terms have a strong bi-directional relationship. These
relationships can be viewed in lists or plotted graphically.

Automatic Summarization and Keyword Extraction

For document summarization, we use a shallow summarization by sentence extraction
method. Relying on the statistics of items in the document vocabulary and comparing the
relative frequency of items in the document with that of items in the collection, we arrive
at a notion of salience of items in the document. Terms in title and headings are also
considered salient. The most salient items become the keywords. Sentences are scored
according to the salience of the terms in them and their position in the document
structure, and the most salient sentences (modulo a number of bonuses and exclusions
based on discourse considerations) are extracted for a summary. A summary generated
this way is not necessarily coherent, but we try to minimize this problem in the way that
the summary is displayed and used (see Active Markup, below). In Avocado, we use a
short, 4-sentence extract in the document hit list, and a longer one whose length is
selected by the user in a frame at the top of the document when it is displayed.

Active Markup

Active Markup can be seen as a method of navigation through a group of documents. A
document is displayed to the user together with an upper frame containing the list of most
salient terms (highlighted in the summary and document by category or salience) and an
extracted summary of the desired length. The keywords are active page components that
can cause the server to return related information. In this implementation, the active
components are used to query the server for a list of related terms to display. The related
terms can then be used to compose another query for another list of documents. The
summary sentences in the upper frame are hot-linked to their sources in the document,
enabling the user to click to skip down to important information. This active markup
approach coupled with the computer-generated summaries provides a form of “query-
free” searching.

Implementation

The system is a Java client running in a frame of a web browser, which connects to a
Java-based server running on Windows NT using Java RMI. This server in turn connects

to the database using JDBC and launches programs for carrying out the initial search and
for producing the final summary as a pair of linked HTML documents which are
displayed with the summary in an upper frame and the complete document in the lower
frame.

In addition, a set of JavaScript form buttons labeled with the most salient keywords is
displayed along the top of the document. Clicking on these form buttons launches a Java
applet that can be used to display related keywords and the documents that contain them.
This constitutes “Active Markup” of the document and provides an approach for query-
free searching of the lexical neighborhood of the document.

Status

Avocado is a working system. At the time of writing, all the functions that we describe,
as well as some others, have been integrated. Recently, we indexed the IBM Global
Services consultants’ reports on customer engagements. The data are much more
problematic than what is found in well-edited news story or article formats. There are 50
large Lotus Notes databases, each for a different industry, with different editing,
keyword, and submission criteria. Most of the documents have attachments in Word,
WordPro, AmiPro, Freelance, PowerPoint, PS and PDF. Further, the interesting parts of
the documents are the attachments. Not all the documents are in English, and some have
no significant content (outlines, templates, management-speak). We plan to report on our
experiences with this “real world” collection. A demonstration or ScreenCam movie will
also be available.

References

Byrd, Roy J. and Ravin, Yael, 1999, submitted to NLDB99

Cooper, James W. and Byrd, Roy J. “Lexical Navigation: Visually Prompted Query
Expansion and Refinement.” Proceedings of DIGLIB97, Philadelphia, PA, July, 1997.

Cooper, James W. and Byrd, Roy J., OBIWAN - A Visual Interface for Prompted Query
Refinement, Proceedings of HICSS-31, Kona, Hawaii, 1998.

Neff, Mary S. and Cooper, James W., ASHRAM: Active Summarization and Markup,
Proceedings of HICSS-32, Wailea, Hawaii, 1999.

