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Abstract 

We describe a system for rapidly determining document 
similarity among a set of documents obtained from an 
information retrieval (IR) system. We obtain a ranked list 
of the most important terms in each document using a 
rapid phrase recognizer system. We store these in a 
database and compute document similarity using a simple 
database query. If the number of terms found to not be 
contained in both documents is less than some 
predetermined threshold compared to the total number of 
terms in the document, these documents are determined to 
be very similar. 

1. Introduction 

One of the continuing problems in information retrieval 
is the fact that in the web environment, there are a large 
number of near-duplicate documents returned from most 
searches. A number of methods have been proposed for 
recognizing and eliminating such duplicates. 

For example, Brown and Prager [1] note that documents 
having identical metadata such as size, date, and base 
filename are likely to be copies kept on different directories 
or on different servers and can effectively be reduced to 
one single occurrence. 

A more sophisticated system was described by Broder 
[2], in which regions of each document, called “shingles” 
are each treated as a sequence of tokens and then reduced 
to a numerical representation. These are then converted to 
“fingerprints” using a method originally described by 
Rabin [3]. 

At a more simplistic level, Bloomfield [4] has recently 
described an algorithm for detecting plagiarism in which he 
simply searches for matches of six or more successive 
words between two documents.  

In this paper, we explore the possibility of characterizing 
documents using the major terms discovered in them using 
phrase recognition software, and develop the hypothesis 
that documents which have identical lists of discovered 
terms are effectively identical in content. 

In the first section we discuss the text mining 
technology we use, and how we manage the data. In the 
next section we discuss how we define duplicate 
documents and how we detect them using the results of 

text mining. Then in the following section, we propose a 
novel “document signature” for the rapid comparison of 
documents, and finally we discuss how this technique can 
be used quite successfully for finding documents that are 
variations on the original document. 

2. The Talent Text Mining System 

In approaching these document retrieval problems, we 
have applied a number of technologies developed in our 
group. In particular, we utilized the suite of text analysis 
tools collectively known as Talent (Text Analysis and 
Language Engineering Tools ) for analyzing all the 
documents in the collection. 

2.1  Textract Phrase Extraction 

The primary tool we use for analyzing documents is 
Textract, itself a chain of tools for recognizing multi-word 
terms and proper names. We have described the features 
of Textract previously [5, 6]. Textract recognizes named 
entities [7], multi-word terms [8] and named [9] and 
unnamed relations between terms. 

Textract reduces related forms of a term to a single 
canonical form that it can then use in computing term 
occurrence statistics more accurately. In addition, it 
recognizes abbreviations and finds the canonical forms of 
the words they stand for and aggregates these terms into a 
vocabulary for the entire collection, and for each 
document, keeping both document and collection-level 
statistics on these terms. Each term is given a collection-
level importance ranking called the IQ or Information 
Quotient [5, 10]. IQ is effectively a measure of the 
document selectivity of a particular term: a term that 
appears in only a few documents is highly selective and 
has a high IQ. On the other hand, a term that appears in 
many documents is far less selective and has a low IQ.  

IQ is measured on a scale of 0 to 100, where a value of X 
means that X% of the vocabulary items in the collection 
have a lower IQ.  The IQ measure is based on the number 
of occurrences of a term in a collection, the number of 
documents the term occurs in and the number documents 
the term occurs in more than once. Thus, IQ is collection 
dependent and a term (such as “computer”) that is salient 
in a collection of documents about entertainment might 
have a very low IQ in a collection of documents about 
computer technology.  



Two of the major outputs of Textract are the IQ and 
collection statistics for each of these canonical terms, and 
tables of the terms found in each document. The terms per 
document are canonical forms within each document. 
However, additional collapsing of terms to canonical forms 
can also occur during a second pass at the collection level. 
It is the document-level terms we use in these experiments. 

Textract further categorizes the entities it discovers into 
one of the categories shown in Table 1. The earlier 
categories have the least certainty and the later ones 
higher certainty. 

Table 1 –Categories assigned to terms by 
Textract 

UWORD Unknown word 
UTERM Unknown term 
UABBR Unknown abbreviation 
UNAME Unknown type of name 
PLACE? Probably a place 
PERSON? Probably a person 
PLACE A place 
PERSON A person 
ORG An organization 

 
While Textract is our tool of choice in these 

experiments, we note that there are a number of other 
systems that have been developed for phrase recognition. 
For example, Liddy has developed DR-LINK, which is 
marketed by Textwise [11], and Evans (et al) have 
developed LinkIT [12]. Further, somewhat similar 
technology is available in the ThingFinder program from 
InXight  [13]. 

2.2 Characterizing Documents 

We have used the Textract system in previous work to 
characterize documents in a number of ways. For example, 
we reported that Textract’s term recognition combined with 
conventional tf*idf term frequency measures and some 
document structure information could be use to help 
generate fairly useful summaries of documents [14]. 

In a similar fashion, we discovered that we could 
characterize documents of little significant content using 
the measures generated by Textract, and eliminate them 
from lists of results returned from searches [15]. 

2.3 Data Management 

Once the data from a collection of documents have been 
analyzed using Textract, it is useful to construct a system 
for managing that data in a way that makes it easy to sort 
the terms by document, by IQ and by term type. For this 
purpose, we constructed a Java class library known as KSS 
[16], [17] (for Knowledge System Server), which builds a 
database from the Textract data. You can also use these 

classes to create search engine indexes of the documents, 
and build the Context thesaurus of co-occurring terms [5]. 

3. What Are Duplicate Documents? 

In any web search, it is fairly likely that some documents 
that are returned are very similar. For example, the same 
documents may exist on several servers or in several users’ 
directories. One very frequent example of this are the Java 
API documents from Sun which are found on almost every 
Java developer’s machine. Since these are very well known 
and described, they are very easy to eliminate using any of 
the existing techniques. 

However, more difficult cases occur when 
• There are several versions of the same document 

on various servers. 
• The same document is found in several forms, 

such as HTML and PDF. 
• A document is embedded in another. In this case 

the  embedded document may or may not be the 
most significant part of the combined document.  

These cases are more difficult to solve rapidly and it is 
these that make up the subject of this study. 

For the purposes of this study, we define duplicate 
documents as ones that have essentially the same words in 
the same sentences and paragraphs. These paragraphs 
could be in a somewhat different order, however. The 
documents may be in different forms, such as HTML and 
PDF and they may vary slightly in header boiler-plate 
information. 

4. Current Experiments 

Given the array of sophisticated term management 
technologies our group has developed, we undertook to 
find out whether these systems can be use to detect 
document similarity. In particular, is it possible to use some 
subset of terms found by Textract as a compressed 
document representation, which we can use to make rapid 
comparisons of documents and cluster or eliminate those 
that are essentially identical? 

4.1 Query 1: Detecting Similar Documents 

In our first experiment, we went to a popular search 
engine site with all enhancements turned off, and issued 
the query “fix broken Thinkpad.” This is the sort of naïve 
query that returns a plethora of documents the user does 
not want, or expect. Much as we predicted, there were no 
documents on how to repair Thinkpads. However, many of 
the top 50 documents contained all of these terms in some 
context or other. Of the top 50, we were able to download 
and analyze 36 of them. Ten of these documents were 
Adobe Acrobat PDF files. We used the Gemini plug-in [18] 
for Adobe Acrobat Reader to export these files into HTML. 

We then created a single collection of these documents 
and analyzed it using Textract. Textract produces a file of 



terms found in each document, and a file of all the terms in 
the collection along with their IQ. We used the KSS Java 
libraries to load these result files into DB2 and subjected 
the results to various SQL queries to determine the number 
of terms that documents had in common. 

4.2 Similarity Queries 

We first must find the significant terms in each 
document. Initially, we ranked all the terms except the 
unknown word types in order of decreasing IQ, and filtered 
to eliminate those terms which only appear once in the 
collection, that is those that have a frequency of 1. 

The question we then want to ask, then, is which terms 
are not found in common between pairs of documents. You 
can find these in a single SQL query of the sort  
Select count(*) as c from  
  (select terms from doc1 where ..)  
not in  
    (select terms from doc2 where ..) 
After some experimentation, we determined that the 

important selection criteria are to select terms with an IQ > 
0 and which were not UWORDS. We dropped the 
requirement of terms having greater frequency than 1 since 
this made comparisons of shorter documents less accurate. 

This returns the count of the number of terms that 
appear in document 2 that are not in document 1. While it 
might seem that n2 queries are necessary, it is really only 
necessary to traverse the upper triangle of this matrix. We 
do this by sorting the documents into order of increasing 
size, and comparing documents with the next larger ones in 
the list. We further reduce the number of compares by 
limiting the test to documents that are no more than about 
10% larger than the compared document. This parameter is, 
of course, adjustable. 

4.3 Results  

We found 6 clusters of documents in the 36 documents 
we analyzed in the first query.  Three of these were pairs of 
identical documents returned from different servers, as 
shown in  

Table 3 contains an interesting cluster of eight 
documents that have similar names, but different sizes. The 
final column of the table shows the difference in contained 
terms between adjacent documents in the list. 

It is easy to see that these documents must be closely 
related versions of the same information. In fact, they are 
all different versions of the same IBM manual describing 
the Websphere server product. They differ in small details: 
for example one manual mentions the Linux version of 
Websphere and another does not. Each of these 
documents was returned as a PDF file and was converted 
to HTML using the Gemini plug-in mentioned above. 

 
 

Table 2. These documents are identical by any measure 
and can be easily recognized and collapsed to a single 
entity, using the methods described by Brown and Prager 
[1]. 

Table 3 contains an interesting cluster of eight 
documents that have similar names, but different sizes. The 
final column of the table shows the difference in contained 
terms between adjacent documents in the list. 

It is easy to see that these documents must be closely 
related versions of the same information. In fact, they are 
all different versions of the same IBM manual describing 
the Websphere server product. They differ in small details: 
for example one manual mentions the Linux version of 
Websphere and another does not. Each of these 
documents was returned as a PDF file and was converted 
to HTML using the Gemini plug-in mentioned above. 

 
 

Table 2– Identical documents returned by 
Query 1 

Document 
name 

Size # of 
terms  

Sytpf130.html 12236 122 
Sytpf1301.html 12236 122 
   
aixy2k.html 153255 737 
aixy2k1.html 153255 737 

   
Client.html 52854 189 

Conf.html 52854 189 
 

Table 3– Very Similar Documents returned 
from Query 1 

Number Title Size Terms  Delta 
terms  

1 Fund2 481963 2198 0 
2 Fund4 481963 2207 29 
3 ct7mhna1 493225 2139 0 
4 Ct7mhna2 493295 2146 64 
5 Fund0 503138 2235 37 
6 Fund1 504737 2249 25 
7 Fund3 505004 2287 11 
8 Fund5 505471 2271 -- 
 
In Table 3, documents 1 and 2 and documents 3 and 4 

are almost certainly absolutely identical. However, the 
remaining four documents are clearly all closely similar as 
well. This algorithm finds such documents even when 
simpler methods would not. 

We note that one could remove some document from 
the cluster of very similar documents if the terms that are 



different between them include a term that is also 
contained in the original query. 

This search also returned two other closely related 
document pairs as shown in Table 4. Documents 9 and 10 
are in fact a draft and a final PDF document of a paper by 
Selker and Burleson. [19] Since these papers are quite 
different in size and format, they would probably not have 
been found as similar by other previously described 
methods. The term differences between the two are partly 
because of some additional abstract and polishing, and 
partly because of the included boilerplate from the 
magazine format. 

Documents 11 and 12 in Table 4 are much less closely 
related by inspection, although the number of terms they 
have in common is quite high. These are in fact a false 
match that we generated by eliminating both unknown 
words and unknown names from the comparison. Both 
documents are, in fact, articles about software updates for 
Thinkpads, but one is about video features for Windows 
3.1 on a Thinkpad 380 and 600, and the other about the 
latest video driver for OS/2 for the same two machines. If 
we do not exclude unknown names (which in this case are 
part and model numbers) the documents are not suggested 
as similar. 

Table 4 – Pairs of Similar Documents returned by 
Query 1 

# Title Size Terms  Delta 
9 Selker3.htm 50169 257 23 
10 Selker.htm 54274 218 -- 
     
11 Manager.htm 15903 91 8 
12 Manager1.htm 16000 80 -- 
 

5. Detecting Identical Documents 

When documents are very large, it is not usually 
convenient to run phrase recognition software on the 
entire set of documents in real time when they are returned 
from a query, because the elapsed time is too great. 
However, as part of the indexing process, it is not 
unreasonable to catalog the major terms in each document. 
However, even making comparisons among large numbers 
of terms in multiple documents can take many seconds and 
can lead to unacceptable delays in returning answers. 

We suggest that it is possible to compute a digital 
signature of each document, based on the terms we find in 
it. Such a signature can be as simple as a sum of the hash 
codes of the term strings that make up these major terms. 
In this experiment, we used the Java String class’s 
hashCode method to compute a code for each term found 
in a document, and then added these codes up to form the 
signature. The results are shown in Table 5. The number 

suffixes are used to indicate identical url names from 
different servers. 

Consulting Table 5, it is clear that even though 
documents 1 and 2 and documents 3 and 4 have similar 
names and identical sizes, they are not exactly the same, 
since the signatures differ. On the other hand, documents 
13 and 14 are identical, as are documents 15 and 16 and 
documents 17 and 18.  To validate this computation, we ran 
a query to find which terms actually appear in document 2 
that do not appear in document 1. These are shown in 
Table 6.  

We note that two documents could be considered 
identical by this procedure if they contained the same 
paragraphs in a different order, or even the same sentences 
in a different order 

 
Table 5 – Computed document signatures for 

similar documents from Query 1. 
Number Url Size Signature 
1 Fund2 481963 24681058826 
2 Fund4 481963 26371644438 
3 Ct7mhna1 493225 33130506660 
4 Ct7mhna2 493295 32920545738 
5 Fund0 503138 10451017932 
6 Fund1 504737 8933271588 
7 Fund3 505004 7211814280 
8 Fund5 505471 12114748848 
13 Sytpf130 12236 13802917585 
14 Sytpf1301 12236 13802917585 
15 aixy2k 153255 -28232730155 
16 aixy2k1 153255 -28232730155 
17 Client 52854 6580188642 
18 Conf 52854 6580188642 

 
Table 6 –Terms found in Document 2 but not in 

Document 1 
Current information 
Database cleanup 
utility 
Marketing campaign 
PDF document 
Product attribute 
Shopper request 

.  
We further note that while individual strings will usually 

have unique hash codes, there is a somewhat larger 
probability that the sum of a series of hash codes will be 
less unique. However, the probability of these collisions is 
small enough that these document signatures remain quite 
useful. Further, it is even less likely that documents with 
accidentally identical signatures would be returned from a 
query if they were not the same document. 



To summarize, these document signatures simply 
provide a shorthand method of representing the top terms 
in documents, so that they can be compare very rapidly. 
The actual technique for comparison is essentially the 
same as in section 4.1. 

6. Query 2 – Smaller Documents 

In a second series of experiments, we issued a more 
focused query “Program ViaVoice in Java,” and were able 
to retrieve 47 of the top 50 returned documents. Since 
many of these had the same filename, we carefully renamed 
them when we save the local copies for analysis.  

Since all of these documents were of modest size (the 
top one was 75 K) we found that we could perform the 
entire analysis on the documents fast enough that it could 
be carried out more or less in real time in response to a 
query.  

The results included 8 pairs of identical documents as 
measured by size and the signature we described above. In 
addition, the results contained the 13 very similar 
documents shown in Table 7. 

Table 7 –Very Similar Documents Returned by 
Query 2 

# # 
Terms  

delta Url Size Signature 

23 47 1 News11 37788 -9902679640 
32 47 1 News9 38100 -9692972733 
28 48 0 News5 38383 -11688727862 
24 47 1 News12 38604 -9692972733 
31 48 0 News8 38727 -9921821918 
25 47 0 News2 39389 -9692972733 
29 47 0 News6 39389 -9692972733 
26 47 0 News3 39465 -9692972733 
27 47 1 News4 39465 -9692972733 
19 46 1 News0 39580 -5116033555 
21 46 3 News1 39580 -8166342237 
22 47 1 News10 40537 -11188846377 
30 48 -- News7 40537 -12715476873 
 
The documents in Table 7 are all very similar, since they 
differ in only 1 or 2 terms out of 47, and all have similar 
sizes. Based on size alone, you would identify only 4 pairs 
of identical documents. However, all of these are detected 
as similar based on the fact that they contain the same 
terms. In addition, it is significant that six of these 
documents have identical signatures (shown in boldface) 
even though they are of four difference sizes. This shows 
the power of the signature method for rapid identification 
of documents. For any new document, you can compute its 
signature and quickly compare it with other document 
signatures. If it is identical, you can also compute whether 
these documents contain similar terms. 

7. Finding Similar Documents 

In the foregoing, we have discussed the problem of 
finding very similar documents, in most cases so similar 
that only one of them need be returned from a search at all. 

There is another set of problems to solve, however, 
relating to documents that are similar because they exist in 
a number of revisions. In order to test this algorithm for 
this new problem, we determined that we should relax the 
restrictions regarding the percentage of terms that could be 
different, and the size differences we would allow between 
documents we compare. 

In the first experiment, we collected 13 documents about 
IBM financial and banking products and services from the 
ibm.com web site, so that they would all have a relatively 
similar vocabulary, and one document which was a press 
release about IBM’s performance in a supercomputer 
comparison. We expected that this last document would 
have a markedly different vocabulary from the others. 

Then we took this last supercomputer document and cut 
out a 2533 byte segment comprising the main news story 
without any of the surrounding HTML formatting, and 
pasted it into each of the other financial documents. We 
then ran Textract and indexed the terms per document as 
described above and ran the same experiment on document 
similarity, where we changed the SQL query to allow the 
fraction of different terms to be as high as 0.5.  This query 
identified every document pair correctly and did not find 
any pairs of documents similar except those consisting of 
an original and the same document with inserted text.  

 
Table 8 shows the fraction of terms that differ between 

the original document and the same document when the 
news release text is inserted. The fractional differences 
vary between 0.01 and 0.157. 

 
Table 8 – Fractional differences in terms in 

financial documents when an news release on 
supercomputers was added to each of them 
# Original url Fraction of 

different terms 
with inserted 
news release 

21 Folder1 0.100 
38 Reuters 0.157 
30 Nletter 0.06 
20 Folder 0.117 
17 Ebus3 0.076 
16 Ebus1 0.055 
35 Retaildel 0.096 
27 Kookmin 0.054 
4 CRM 0.100 
1 24552 0.040 



8 Building 0.040 
14 Ebusmark 0.010 
33 RetailB 0.015 

 
We concluded that documents that had less than 20% 

of the terms different were likely to represent documents 
that were related and contained much the same text. In fact, 
we found it quite encouraging that this method identified 
every such document correctly and returned no false 
positives. (A false positive would be a difference in terms 
of less than 20% in documents that were in fact different.) 
In other words the precision and recall were 100%.  

On the other hand, the algorithm did not identify the 
short IBM press release document as being related to any 
of the others by containment, since it was relatively short, 
and contained fewer salient terms. 

7.1 Inserting Similar Document Text 

In this experiment, we took one of the financial 
documents, called CRM in  

Table 8, and inserted 3276 bytes of it, comprising nearly 
all of the non-markup text, into all of the other documents 
in the set. We found much the same results as above: 
100% precision and recall as shown in Table 9. 

Again, all of the documents with the inserted text were 
detected as similar to the originals and no false positives 
were detected. The fraction of terms that were different was 
0.125 or under, except for the case where the larger CRM 
document was added to the smaller Ibmtop document. 

Table 9 - Fractional differences in terms in 
financial documents when a similar article was 
added to each of them. 

Doc 
number 

Original 
url 

Fraction 
different 
with CRM 
inserted 
in it 

Fraction different 
between CRM 
added and ibmtop 
added 

21 Folder1 0.100 0.050 
38 Reuters 0.111 0.111 
30 Nletter 0.064 0.064 
20 Folder 0.125 0.125 
17 Ebus3 0.040 0.040 
16 Ebus1 0.055 0.055 
35 Retaildel 0.066 0.066 
27 Kookmin 0.027 0.027 
1 24552 0.080 0.020 
8 Building 0.125 0.104 
14 Ebusmark 0.025 0.020 
33 RetailB 0.020 0.020 
24 Ibmtop 0.500 --- 

 
In the final test, we ran both experiments 

simultaneously, and found that all the similar documents 

were detected as before. In addition, in an unexpected 
result, all of the documents with the Ibmtop text were 
found to be similar to the corresponding document with 
the inserted CRM text as well. This is shown in the fourth 
column of Table 9. 

8. Implementation Details 

In these experiments, we ran the Textract text mining 
program on the collection of documents (around 50) 
returned from the query.  Then we generated low-level DB2 
table load files [20] from the Textract output and loaded the 
terms/document data into DB2. The IQ and frequency of 
the terms was determined from this collection. Thus, IQ 
would change somewhat based on the contents of the 
documents returned. A term that was highly salient in one 
document set might appear too frequently to be very 
selective in another set. However, we have eliminated 
much of this dependence by simply requiring that the IQ 
value be non-zero. It would in general be possible to 
maintain a vocabulary for a search system with IQs 
predetermined.  

When all of the documents are relatively short, it is 
quite possible to do this more or less in real time. However, 
when longer documents make the mining processes too 
slow, it is necessary to index and mine the documents in 
advance and cache the results, just as you do with the 
document search indexes. When database comparisons of 
very long documents are too slow, it is possible to just 
compare the top terms, for example the top 200 terms in 
each document. Finally, it is quite reasonable to store the 
document signature we describe as part of the database 
document table, so you can compare documents quickly. 

In the course of these experiments, we varied the IQ 
threshold and the term frequency threshold. For various 
types of applications, these values may well need to be 
adjusted. However, it is important to note that the 
document signature is dependent on the number of terms 
you retrieve, and if you change your criteria, you will need 
to recompute these signatures. 

In comparing documents for close similarity as we did in 
Query 1, we only considered documents that were within 
10% of the size of the one we were comparing to, and only 
considered documents to be similar when the number of 
terms that were different was less than 10% of the total 
number of terms in the smaller document. In comparing 
documents that contained embedded additional material, 
we relaxed both of these criteria to 50%, with little 
performance penalty.  

In doing the database comparisons we discuss in 4.2, 
the SQL query could undoubtedly be speeded up if the 
terms were compared by integer key instead of using a 
string compare. This and similar enhancements are the 
subject of further work. In addition, we will be 
experimenting with different percentages of changes in 



documents to see how different they can be and still be 
recognized as similar.  

9. Summary 

We define similar documents as ones that have 
essentially the same sentences and paragraphs, but not 
necessarily in exactly the same order. We have found that 
we can accurately compute whether documents are similar 
by comparing the number of terms found using a phrase 
recognition program such as Textract.  

We further found that you can accurately recognize 
documents that have been revised to contain parts of other 
documents as still being closely related to the parent 
document.  Finally, we described a novel document 
signature that you can use to make a rapid comparison 
between documents that are likely to be identical. 

This method has some superficial similarity to the 
“shingles” approach [7], but, pending testing with 
shingles, it is presumably an improvement because 
shingles are typically larger groups of terms. Our method 
uses only the salient terms to characterize documents, and 
these terms can appear in a different order and still provide 
the same characterization of the document. Further, phrase 
recognition programs such as Textract generally reduce the 
found terms to a root or “canonical” form, so that even if 
the terms appear in different variant forms in slightly edited 
versions of a document, they will be recognized as being 
the same root term and found to be identical. Finally, this 
method is insensitive to the addition of additional 
polishing sentences or the rearrangement of whole 
paragraphs in edited versions of a document.  

This system has broad applicability in improving the 
results of searches of large document collections, whether 
the returned documents have been indexes for their term 
content in advance or not. It can also be used for rather 
sophisticated plagiarism detection, or as an adjunct in 
finding further documents of interest and grouping these 
documents for the user’s convenience. 
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