
A Novel Method for Detecting Similar Documents
James W. Cooper, Anni R. Coden, Eric W. Brown

IBM T J Watson Research Center
PO Box 704, Yorktown Heights, NY 10598
{jwcnmr, anni, brown} @ watson.ibm.com

Abstract

We describe a system for rapidly determining document
similarity among a set of documents obtained from an
information retrieval (IR) system. We obtain a ranked list
of the most important terms in each document using a
rapid phrase recognizer system. We store these in a
database and compute document similarity using a simple
database query. If the number of terms found to not be
contained in both documents is less than some
predetermined threshold compared to the total number of
terms in the document, these documents are determined to
be very similar.

1. Introduction

One of the continuing problems in information retrieval
is the fact that in the web environment, there are a large
number of near-duplicate documents returned from most
searches. A number of methods have been proposed for
recognizing and eliminating such duplicates.

For example, Brown and Prager [1] note that documents
having identical metadata such as size, date, and base
filename are likely to be copies kept on different directories
or on different servers and can effectively be reduced to
one single occurrence.

A more sophisticated system was described by Broder
[2], in which regions of each document, called “shingles”
are each treated as a sequence of tokens and then reduced
to a numerical representation. These are then converted to
“fingerprints” using a method originally described by
Rabin [3].

At a more simplistic level, Bloomfield [4] has recently
described an algorithm for detecting plagiarism in which he
simply searches for matches of six or more successive
words between two documents.

In this paper, we explore the possibility of characterizing
documents using the major terms discovered in them using
phrase recognition software, and develop the hypothesis
that documents which have identical lists of discovered
terms are effectively identical in content.

In the first section we discuss the text mining
technology we use, and how we manage the data. In the
next section we discuss how we define duplicate
documents and how we detect them using the results of

text mining. Then in the following section, we propose a
novel “document signature” for the rapid comparison of
documents, and finally we discuss how this technique can
be used quite successfully for finding documents that are
variations on the original document.

2. The Talent Text Mining System

In approaching these document retrieval problems, we
have applied a number of technologies developed in our
group. In particular, we utilized the suite of text analysis
tools collectively known as Talent (Text Analysis and
Language Engineering Tools) for analyzing all the
documents in the collection.

2.1 Textract Phrase Extraction

The primary tool we use for analyzing documents is
Textract, itself a chain of tools for recognizing multi-word
terms and proper names. We have described the features
of Textract previously [5, 6]. Textract recognizes named
entities [7], multi-word terms [8] and named [9] and
unnamed relations between terms.

Textract reduces related forms of a term to a single
canonical form that it can then use in computing term
occurrence statistics more accurately. In addition, it
recognizes abbreviations and finds the canonical forms of
the words they stand for and aggregates these terms into a
vocabulary for the entire collection, and for each
document, keeping both document and collection-level
statistics on these terms. Each term is given a collection-
level importance ranking called the IQ or Information
Quotient [5, 10]. IQ is effectively a measure of the
document selectivity of a particular term: a term that
appears in only a few documents is highly selective and
has a high IQ. On the other hand, a term that appears in
many documents is far less selective and has a low IQ.

IQ is measured on a scale of 0 to 100, where a value of X
means that X% of the vocabulary items in the collection
have a lower IQ. The IQ measure is based on the number
of occurrences of a term in a collection, the number of
documents the term occurs in and the number documents
the term occurs in more than once. Thus, IQ is collection
dependent and a term (such as “computer”) that is salient
in a collection of documents about entertainment might
have a very low IQ in a collection of documents about
computer technology.

Two of the major outputs of Textract are the IQ and
collection statistics for each of these canonical terms, and
tables of the terms found in each document. The terms per
document are canonical forms within each document.
However, additional collapsing of terms to canonical forms
can also occur during a second pass at the collection level.
It is the document-level terms we use in these experiments.

Textract further categorizes the entities it discovers into
one of the categories shown in Table 1. The earlier
categories have the least certainty and the later ones
higher certainty.

Table 1 –Categories assigned to terms by
Textract

UWORD Unknown word
UTERM Unknown term
UABBR Unknown abbreviation
UNAME Unknown type of name
PLACE? Probably a place
PERSON? Probably a person
PLACE A place
PERSON A person
ORG An organization

While Textract is our tool of choice in these

experiments, we note that there are a number of other
systems that have been developed for phrase recognition.
For example, Liddy has developed DR-LINK, which is
marketed by Textwise [11], and Evans (et al) have
developed LinkIT [12]. Further, somewhat similar
technology is available in the ThingFinder program from
InXight [13].

2.2 Characterizing Documents

We have used the Textract system in previous work to
characterize documents in a number of ways. For example,
we reported that Textract’s term recognition combined with
conventional tf*idf term frequency measures and some
document structure information could be use to help
generate fairly useful summaries of documents [14].

In a similar fashion, we discovered that we could
characterize documents of little significant content using
the measures generated by Textract, and eliminate them
from lists of results returned from searches [15].

2.3 Data Management

Once the data from a collection of documents have been
analyzed using Textract, it is useful to construct a system
for managing that data in a way that makes it easy to sort
the terms by document, by IQ and by term type. For this
purpose, we constructed a Java class library known as KSS
[16], [17] (for Knowledge System Server), which builds a
database from the Textract data. You can also use these

classes to create search engine indexes of the documents,
and build the Context thesaurus of co-occurring terms [5].

3. What Are Duplicate Documents?

In any web search, it is fairly likely that some documents
that are returned are very similar. For example, the same
documents may exist on several servers or in several users’
directories. One very frequent example of this are the Java
API documents from Sun which are found on almost every
Java developer’s machine. Since these are very well known
and described, they are very easy to eliminate using any of
the existing techniques.

However, more difficult cases occur when
• There are several versions of the same document

on various servers.
• The same document is found in several forms,

such as HTML and PDF.
• A document is embedded in another. In this case

the embedded document may or may not be the
most significant part of the combined document.

These cases are more difficult to solve rapidly and it is
these that make up the subject of this study.

For the purposes of this study, we define duplicate
documents as ones that have essentially the same words in
the same sentences and paragraphs. These paragraphs
could be in a somewhat different order, however. The
documents may be in different forms, such as HTML and
PDF and they may vary slightly in header boiler-plate
information.

4. Current Experiments

Given the array of sophisticated term management
technologies our group has developed, we undertook to
find out whether these systems can be use to detect
document similarity. In particular, is it possible to use some
subset of terms found by Textract as a compressed
document representation, which we can use to make rapid
comparisons of documents and cluster or eliminate those
that are essentially identical?

4.1 Query 1: Detecting Similar Documents

In our first experiment, we went to a popular search
engine site with all enhancements turned off, and issued
the query “fix broken Thinkpad.” This is the sort of naïve
query that returns a plethora of documents the user does
not want, or expect. Much as we predicted, there were no
documents on how to repair Thinkpads. However, many of
the top 50 documents contained all of these terms in some
context or other. Of the top 50, we were able to download
and analyze 36 of them. Ten of these documents were
Adobe Acrobat PDF files. We used the Gemini plug-in [18]
for Adobe Acrobat Reader to export these files into HTML.

We then created a single collection of these documents
and analyzed it using Textract. Textract produces a file of

terms found in each document, and a file of all the terms in
the collection along with their IQ. We used the KSS Java
libraries to load these result files into DB2 and subjected
the results to various SQL queries to determine the number
of terms that documents had in common.

4.2 Similarity Queries

We first must find the significant terms in each
document. Initially, we ranked all the terms except the
unknown word types in order of decreasing IQ, and filtered
to eliminate those terms which only appear once in the
collection, that is those that have a frequency of 1.

The question we then want to ask, then, is which terms
are not found in common between pairs of documents. You
can find these in a single SQL query of the sort
Select count(*) as c from
 (select terms from doc1 where ..)
not in
 (select terms from doc2 where ..)
After some experimentation, we determined that the

important selection criteria are to select terms with an IQ >
0 and which were not UWORDS. We dropped the
requirement of terms having greater frequency than 1 since
this made comparisons of shorter documents less accurate.

This returns the count of the number of terms that
appear in document 2 that are not in document 1. While it
might seem that n2 queries are necessary, it is really only
necessary to traverse the upper triangle of this matrix. We
do this by sorting the documents into order of increasing
size, and comparing documents with the next larger ones in
the list. We further reduce the number of compares by
limiting the test to documents that are no more than about
10% larger than the compared document. This parameter is,
of course, adjustable.

4.3 Results

We found 6 clusters of documents in the 36 documents
we analyzed in the first query. Three of these were pairs of
identical documents returned from different servers, as
shown in

Table 3 contains an interesting cluster of eight
documents that have similar names, but different sizes. The
final column of the table shows the difference in contained
terms between adjacent documents in the list.

It is easy to see that these documents must be closely
related versions of the same information. In fact, they are
all different versions of the same IBM manual describing
the Websphere server product. They differ in small details:
for example one manual mentions the Linux version of
Websphere and another does not. Each of these
documents was returned as a PDF file and was converted
to HTML using the Gemini plug-in mentioned above.

Table 2. These documents are identical by any measure
and can be easily recognized and collapsed to a single
entity, using the methods described by Brown and Prager
[1].

Table 3 contains an interesting cluster of eight
documents that have similar names, but different sizes. The
final column of the table shows the difference in contained
terms between adjacent documents in the list.

It is easy to see that these documents must be closely
related versions of the same information. In fact, they are
all different versions of the same IBM manual describing
the Websphere server product. They differ in small details:
for example one manual mentions the Linux version of
Websphere and another does not. Each of these
documents was returned as a PDF file and was converted
to HTML using the Gemini plug-in mentioned above.

Table 2– Identical documents returned by
Query 1

Document
name

Size # of
terms

Sytpf130.html 12236 122
Sytpf1301.html 12236 122

aixy2k.html 153255 737
aixy2k1.html 153255 737

Client.html 52854 189

Conf.html 52854 189

Table 3– Very Similar Documents returned
from Query 1

Number Title Size Terms Delta
terms

1 Fund2 481963 2198 0
2 Fund4 481963 2207 29
3 ct7mhna1 493225 2139 0
4 Ct7mhna2 493295 2146 64
5 Fund0 503138 2235 37
6 Fund1 504737 2249 25
7 Fund3 505004 2287 11
8 Fund5 505471 2271 --

In Table 3, documents 1 and 2 and documents 3 and 4

are almost certainly absolutely identical. However, the
remaining four documents are clearly all closely similar as
well. This algorithm finds such documents even when
simpler methods would not.

We note that one could remove some document from
the cluster of very similar documents if the terms that are

different between them include a term that is also
contained in the original query.

This search also returned two other closely related
document pairs as shown in Table 4. Documents 9 and 10
are in fact a draft and a final PDF document of a paper by
Selker and Burleson. [19] Since these papers are quite
different in size and format, they would probably not have
been found as similar by other previously described
methods. The term differences between the two are partly
because of some additional abstract and polishing, and
partly because of the included boilerplate from the
magazine format.

Documents 11 and 12 in Table 4 are much less closely
related by inspection, although the number of terms they
have in common is quite high. These are in fact a false
match that we generated by eliminating both unknown
words and unknown names from the comparison. Both
documents are, in fact, articles about software updates for
Thinkpads, but one is about video features for Windows
3.1 on a Thinkpad 380 and 600, and the other about the
latest video driver for OS/2 for the same two machines. If
we do not exclude unknown names (which in this case are
part and model numbers) the documents are not suggested
as similar.

Table 4 – Pairs of Similar Documents returned by
Query 1

Title Size Terms Delta
9 Selker3.htm 50169 257 23
10 Selker.htm 54274 218 --

11 Manager.htm 15903 91 8
12 Manager1.htm 16000 80 --

5. Detecting Identical Documents

When documents are very large, it is not usually
convenient to run phrase recognition software on the
entire set of documents in real time when they are returned
from a query, because the elapsed time is too great.
However, as part of the indexing process, it is not
unreasonable to catalog the major terms in each document.
However, even making comparisons among large numbers
of terms in multiple documents can take many seconds and
can lead to unacceptable delays in returning answers.

We suggest that it is possible to compute a digital
signature of each document, based on the terms we find in
it. Such a signature can be as simple as a sum of the hash
codes of the term strings that make up these major terms.
In this experiment, we used the Java String class’s
hashCode method to compute a code for each term found
in a document, and then added these codes up to form the
signature. The results are shown in Table 5. The number

suffixes are used to indicate identical url names from
different servers.

Consulting Table 5, it is clear that even though
documents 1 and 2 and documents 3 and 4 have similar
names and identical sizes, they are not exactly the same,
since the signatures differ. On the other hand, documents
13 and 14 are identical, as are documents 15 and 16 and
documents 17 and 18. To validate this computation, we ran
a query to find which terms actually appear in document 2
that do not appear in document 1. These are shown in
Table 6.

We note that two documents could be considered
identical by this procedure if they contained the same
paragraphs in a different order, or even the same sentences
in a different order

Table 5 – Computed document signatures for

similar documents from Query 1.
Number Url Size Signature
1 Fund2 481963 24681058826
2 Fund4 481963 26371644438
3 Ct7mhna1 493225 33130506660
4 Ct7mhna2 493295 32920545738
5 Fund0 503138 10451017932
6 Fund1 504737 8933271588
7 Fund3 505004 7211814280
8 Fund5 505471 12114748848
13 Sytpf130 12236 13802917585
14 Sytpf1301 12236 13802917585
15 aixy2k 153255 -28232730155
16 aixy2k1 153255 -28232730155
17 Client 52854 6580188642
18 Conf 52854 6580188642

Table 6 –Terms found in Document 2 but not in

Document 1
Current information
Database cleanup
utility
Marketing campaign
PDF document
Product attribute
Shopper request

.
We further note that while individual strings will usually

have unique hash codes, there is a somewhat larger
probability that the sum of a series of hash codes will be
less unique. However, the probability of these collisions is
small enough that these document signatures remain quite
useful. Further, it is even less likely that documents with
accidentally identical signatures would be returned from a
query if they were not the same document.

To summarize, these document signatures simply
provide a shorthand method of representing the top terms
in documents, so that they can be compare very rapidly.
The actual technique for comparison is essentially the
same as in section 4.1.

6. Query 2 – Smaller Documents

In a second series of experiments, we issued a more
focused query “Program ViaVoice in Java,” and were able
to retrieve 47 of the top 50 returned documents. Since
many of these had the same filename, we carefully renamed
them when we save the local copies for analysis.

Since all of these documents were of modest size (the
top one was 75 K) we found that we could perform the
entire analysis on the documents fast enough that it could
be carried out more or less in real time in response to a
query.

The results included 8 pairs of identical documents as
measured by size and the signature we described above. In
addition, the results contained the 13 very similar
documents shown in Table 7.

Table 7 –Very Similar Documents Returned by
Query 2

Terms

delta Url Size Signature

23 47 1 News11 37788 -9902679640
32 47 1 News9 38100 -9692972733
28 48 0 News5 38383 -11688727862
24 47 1 News12 38604 -9692972733
31 48 0 News8 38727 -9921821918
25 47 0 News2 39389 -9692972733
29 47 0 News6 39389 -9692972733
26 47 0 News3 39465 -9692972733
27 47 1 News4 39465 -9692972733
19 46 1 News0 39580 -5116033555
21 46 3 News1 39580 -8166342237
22 47 1 News10 40537 -11188846377
30 48 -- News7 40537 -12715476873

The documents in Table 7 are all very similar, since they
differ in only 1 or 2 terms out of 47, and all have similar
sizes. Based on size alone, you would identify only 4 pairs
of identical documents. However, all of these are detected
as similar based on the fact that they contain the same
terms. In addition, it is significant that six of these
documents have identical signatures (shown in boldface)
even though they are of four difference sizes. This shows
the power of the signature method for rapid identification
of documents. For any new document, you can compute its
signature and quickly compare it with other document
signatures. If it is identical, you can also compute whether
these documents contain similar terms.

7. Finding Similar Documents

In the foregoing, we have discussed the problem of
finding very similar documents, in most cases so similar
that only one of them need be returned from a search at all.

There is another set of problems to solve, however,
relating to documents that are similar because they exist in
a number of revisions. In order to test this algorithm for
this new problem, we determined that we should relax the
restrictions regarding the percentage of terms that could be
different, and the size differences we would allow between
documents we compare.

In the first experiment, we collected 13 documents about
IBM financial and banking products and services from the
ibm.com web site, so that they would all have a relatively
similar vocabulary, and one document which was a press
release about IBM’s performance in a supercomputer
comparison. We expected that this last document would
have a markedly different vocabulary from the others.

Then we took this last supercomputer document and cut
out a 2533 byte segment comprising the main news story
without any of the surrounding HTML formatting, and
pasted it into each of the other financial documents. We
then ran Textract and indexed the terms per document as
described above and ran the same experiment on document
similarity, where we changed the SQL query to allow the
fraction of different terms to be as high as 0.5. This query
identified every document pair correctly and did not find
any pairs of documents similar except those consisting of
an original and the same document with inserted text.

Table 8 shows the fraction of terms that differ between

the original document and the same document when the
news release text is inserted. The fractional differences
vary between 0.01 and 0.157.

Table 8 – Fractional differences in terms in

financial documents when an news release on
supercomputers was added to each of them
Original url Fraction of

different terms
with inserted
news release

21 Folder1 0.100
38 Reuters 0.157
30 Nletter 0.06
20 Folder 0.117
17 Ebus3 0.076
16 Ebus1 0.055
35 Retaildel 0.096
27 Kookmin 0.054
4 CRM 0.100
1 24552 0.040

8 Building 0.040
14 Ebusmark 0.010
33 RetailB 0.015

We concluded that documents that had less than 20%

of the terms different were likely to represent documents
that were related and contained much the same text. In fact,
we found it quite encouraging that this method identified
every such document correctly and returned no false
positives. (A false positive would be a difference in terms
of less than 20% in documents that were in fact different.)
In other words the precision and recall were 100%.

On the other hand, the algorithm did not identify the
short IBM press release document as being related to any
of the others by containment, since it was relatively short,
and contained fewer salient terms.

7.1 Inserting Similar Document Text

In this experiment, we took one of the financial
documents, called CRM in

Table 8, and inserted 3276 bytes of it, comprising nearly
all of the non-markup text, into all of the other documents
in the set. We found much the same results as above:
100% precision and recall as shown in Table 9.

Again, all of the documents with the inserted text were
detected as similar to the originals and no false positives
were detected. The fraction of terms that were different was
0.125 or under, except for the case where the larger CRM
document was added to the smaller Ibmtop document.

Table 9 - Fractional differences in terms in
financial documents when a similar article was
added to each of them.

Doc
number

Original
url

Fraction
different
with CRM
inserted
in it

Fraction different
between CRM
added and ibmtop
added

21 Folder1 0.100 0.050
38 Reuters 0.111 0.111
30 Nletter 0.064 0.064
20 Folder 0.125 0.125
17 Ebus3 0.040 0.040
16 Ebus1 0.055 0.055
35 Retaildel 0.066 0.066
27 Kookmin 0.027 0.027
1 24552 0.080 0.020
8 Building 0.125 0.104
14 Ebusmark 0.025 0.020
33 RetailB 0.020 0.020
24 Ibmtop 0.500 ---

In the final test, we ran both experiments

simultaneously, and found that all the similar documents

were detected as before. In addition, in an unexpected
result, all of the documents with the Ibmtop text were
found to be similar to the corresponding document with
the inserted CRM text as well. This is shown in the fourth
column of Table 9.

8. Implementation Details

In these experiments, we ran the Textract text mining
program on the collection of documents (around 50)
returned from the query. Then we generated low-level DB2
table load files [20] from the Textract output and loaded the
terms/document data into DB2. The IQ and frequency of
the terms was determined from this collection. Thus, IQ
would change somewhat based on the contents of the
documents returned. A term that was highly salient in one
document set might appear too frequently to be very
selective in another set. However, we have eliminated
much of this dependence by simply requiring that the IQ
value be non-zero. It would in general be possible to
maintain a vocabulary for a search system with IQs
predetermined.

When all of the documents are relatively short, it is
quite possible to do this more or less in real time. However,
when longer documents make the mining processes too
slow, it is necessary to index and mine the documents in
advance and cache the results, just as you do with the
document search indexes. When database comparisons of
very long documents are too slow, it is possible to just
compare the top terms, for example the top 200 terms in
each document. Finally, it is quite reasonable to store the
document signature we describe as part of the database
document table, so you can compare documents quickly.

In the course of these experiments, we varied the IQ
threshold and the term frequency threshold. For various
types of applications, these values may well need to be
adjusted. However, it is important to note that the
document signature is dependent on the number of terms
you retrieve, and if you change your criteria, you will need
to recompute these signatures.

In comparing documents for close similarity as we did in
Query 1, we only considered documents that were within
10% of the size of the one we were comparing to, and only
considered documents to be similar when the number of
terms that were different was less than 10% of the total
number of terms in the smaller document. In comparing
documents that contained embedded additional material,
we relaxed both of these criteria to 50%, with little
performance penalty.

In doing the database comparisons we discuss in 4.2,
the SQL query could undoubtedly be speeded up if the
terms were compared by integer key instead of using a
string compare. This and similar enhancements are the
subject of further work. In addition, we will be
experimenting with different percentages of changes in

documents to see how different they can be and still be
recognized as similar.

9. Summary

We define similar documents as ones that have
essentially the same sentences and paragraphs, but not
necessarily in exactly the same order. We have found that
we can accurately compute whether documents are similar
by comparing the number of terms found using a phrase
recognition program such as Textract.

We further found that you can accurately recognize
documents that have been revised to contain parts of other
documents as still being closely related to the parent
document. Finally, we described a novel document
signature that you can use to make a rapid comparison
between documents that are likely to be identical.

This method has some superficial similarity to the
“shingles” approach [7], but, pending testing with
shingles, it is presumably an improvement because
shingles are typically larger groups of terms. Our method
uses only the salient terms to characterize documents, and
these terms can appear in a different order and still provide
the same characterization of the document. Further, phrase
recognition programs such as Textract generally reduce the
found terms to a root or “canonical” form, so that even if
the terms appear in different variant forms in slightly edited
versions of a document, they will be recognized as being
the same root term and found to be identical. Finally, this
method is insensitive to the addition of additional
polishing sentences or the rearrangement of whole
paragraphs in edited versions of a document.

This system has broad applicability in improving the
results of searches of large document collections, whether
the returned documents have been indexes for their term
content in advance or not. It can also be used for rather
sophisticated plagiarism detection, or as an adjunct in
finding further documents of interest and grouping these
documents for the user’s convenience.

10. References

[1] Brown, Eric W. and Prager, John M., US Patent 05913208.
[2] Broder, Andrei Z, “Identifying and Filtering Near-duplicate

Documents,” Combinatorial Pattern Matching, 11th Annual
Symposium, Montreal, Canada, June, 2000.

[3] Rabin, M. O., “Fingerprinting by random polynomials, “
Center for Research in Computing Technology, Harvard
University, Report TR-15-81, 1981.

[4] Bloomfield, Louis, University of Virginia, interviewed on
NPR’s All Things Considered, May 9, 2001. See
www.plagiarism.phys.virginia.edu.

[5] Cooper, J. W. and Byrd, R J, “Lexical Navigation: Visually
Prompted Query Refinement,” ACM Digital Libraries
Conference, Philadelphia, 1997.

[6] Cooper, James W. and Byrd, Roy J., OBIWAN – “A Visual
Interface for Prompted Query Refinement,” Proceedings of
HICSS-31, Kona, Hawaii, 1998.

[7] Ravin, Y. and Wacholder, N. 1996, “Ext racting Names from
Natural-Language Text,” IBM Research Report 20338.

[8] Justeson, J. S. and S. Katz "Technical terminology: some
linguistic properties and an algorithm for identification in
text.” Natural Language Engineering, 1, 9-27, 1995.

[9] Byrd, R.J. and Ravin, Y. Identifying and Extracting
Relations in Text. Proceedings of NLDB 99, Klagenfurt,
Austria.

[10] Prager, John M., Linguini: Recognition of Language in
Digital Documents, in Proceedings of the 32nd Hawaii
International Conference on System Sciences, Wailea, HI,
January, 1999.

[11] Mnis-Textwise Labs, www.textwise.com. DR-LINK was
developed at Syracuse University and is marketed by
Textwise.

[12] Evans, D. K., Klavans, J. and Wacholder, N., “Document
Processing with LinkIT,” Proc. Of the RIAO Conference,
Paris, France, 2000.

[13] InXight, Inc. www.inxight.com
[14] Neff, Mary S. and Cooper, James W. “Document

Summarization for Active Markup,” in Proceedings of the
32nd Hawaii International Conference on System Sciences,
Wailea, HI, January, 1999.

[15] Cooper J.W. and Prager, John M. “Anti-Serendipity –
Finding Useless Documents and Similar Documents,”
Proceedings of the 33rd Hawaii International Conference on
System Sciences, Maui, HI, January, 2000.

[16] Cooper, J. W. “The Technology of Lexical Navigation,”
Workshop on Browsing Technology, First Joint Conference
on Digital Libraries, Roanoke, VA, 2001.

[17] Cooper, J.W., Cesar, C., So, Edward, and Mack R. L.,
“Construction of an OO Framework for Text Mining,”
OOPSLA, Tampa Bay, 2001.

[18] Gemini plug-in for Adobe Acrobat Reader, Iceni
Technology, Ltd, Norwich, England, www.iceni.com.

[19] Selker, T. and Burleson, W. “Context -aware Design and
Interaction in Computer Systems,” IBM Systems Journal,
39, 891 (2000).

[20] Cooper, J W, “Loading Your Databases,” JavaPro, May,
2000.

