I'VE GOT A LITTLE LIST

James W. Cooper

As someday it may happen that a sorted list must be found, Java s got the list. | was thinking
about the problem of sorted termsin alist box when | was writing a Visual Basic program the
other day. VB has a very handy feature where you can define alist box as sorted and not worry
about keeping the data sorted when you add it to the list: it is sorted automatically. Well, |
thought, this is something we certainly ought to be able to do in Java as well, and probably do it
alot better, since Javais an OO language and since the visual controls are so flexible.

The first thing we should recognize is that this is a problem for the JFC or Swing controls, not
for the AWT List object. The AWT List isvery simple and very limited: you can add and
remove linesin the list box and select one or more of them. But sorting is not one of its features.

Fortunately the JList control in the Swing classes is more than up to this challenge and quite a
few related challenges as we'll see below. However, in order to write programs using the Swing
controls, we'll have to get up to speed on the Swing environment. Briefly, these components are
written amost entirely in Java and do not have the “peer” native code components that the AWT
components do. They also have a pluggable look and feel, so you can make your programs ook
like Windows, Matif, or like Java. While these classes are nominally the Java Foundation
Classes (or JFC), the library they are contained in is called the “Swing” library for historical
reasons, so Java people say that it is spelled “JFC” but is pronounced “Swing.”

Starting up a Swing program means setting the look-and-feel, activating the window close box
and setting up the layout of the main window. All Swing applications start with the JFrame
component, so | have extended JFrame to a ssimple JxFrame class which | use as my base class,
and do all these things under the covers. The entire JxFrame class is shown in Figure 1:

public class JxFrane extends JFrane {
public JxFrane(String title) {
super (title);
setd osedick();
set LF();

private void setC osedick() {
//create window |listener to respond to wi ndow cl ose click
addW ndowLi st ener (new W ndowAdapter () {
public void wi ndowd osi ng(WndowEvent e) {
System exi t (0);

private void setLF() {

/! Force SwingApp to cone up in the System L&F

String laf = U Manager. get Syst emLookAndFeel C assName() ;

try {
U Manager . set LookAndFeel (1 af);

} catch (UnsupportedLookAndFeel Excepti on exc) {
Systemerr.println("Unsupported L&: " + laf);

} catch (Exception exc) {
Systemerr.printin("Error loading " + laf + ": " + exc);

}

Figure 1: The JxFrane class, which we use as the base class in all our Sw ng prograns.

When you start a Swing program, you add your visual objects to the Content Pane rather than to
the JFrame itself. This means that every Swing program starts with something like

JPanel jp = new JPanel ();
get Cont ent Pane() . add(j p) ;

where you then treat the JPanel as the container for al your objects.

TheJList Class

You may recall that the JList itself is sort of tricky to use and people frequently write Adapter
classes to make it seem just as smple asthe AWT List class. | even wrote a column on this last
year. However it isthisflexibility that is the answer to our sorted list problem and a couple of
more sophisticated related problems. The JList class works as a display system for data that you
tell it about. Rather than adding or removing data from the list itself, you modify the data object
and have it tell the JList object that it has changed. This sort of separation of the data from the
display istypical of the Observer pattern, where the data tells the Observer that some values have
changed.

We also note that the JList does not support scrolling directly. Instead you have to insert the JList
inside the viewport of a JScrollPane as we see below.

There are three possible data representation that the JList object can display, a Vector, an array
and any object that implements the ListModel interface. In the first two cases, asimple
ListModel is created under the covers and connected to the JList. In the final, and most general
case, you write some of the code yourself.

S0, you ask, can we use just thislittle bit of information to create a sorted list? Y es, you can, as
long as the sorting is quite ssimple. You could just create an array, sort it and connect it to a JList.
We do that in the simple example below:

/** Sinple sorted array used as data for JList*/
public class ShowLi st extends JxFranme {
String nanes[];

public ShowlList() {
super ("Li st of nanes");
JPanel jp = new JPanel ();
get Cont ent Pane() . add(j p) ;
j p- set Layout (new Bor der Layout ());

//create the array
names = new String[5];
int i =0;

names[i ++] = ("Dave");

names[i++] = ("Charlie");
nanmes[i++] = ("Adant);
names[i ++] = ("Edward");
names[i++] = ("Barry");

/lsort the array
Arrays.sort (nanes);

//create the list and add it

JLi st nList = new JLi st (nanes);
JScrol | Pane sc = new JScrol | Pane();
sc. getViewport().add (nList);
jp.-add ("Center", sc);

set Si ze(new Di nensi on(150, 150));
set Vi si bl e(true);

}
Asyou see, we just create a 5-element array and add 5 out of order names to it. Then we use the
static sort method of the Arrays class to sort the array and add the sorted array to the JList. This
results in the ssimple display shown in Figure 2.

B3 List of na... M=l E3
Adam
Barry
Charlie
Dave
Edward

Figure 2- A smple JList loaded from a sorted array.

Of course thisisreally much too simple for actual use. If we added more elements to the array
they wouldn’'t be sorted, and if we had to call the sort each time ourselves, we' ve made the
program a bit too complicated for such a simple task.

A JList with aListM odel

The next ssimplest kind of JList utilizes the DefaultListModel to contain the data. This class
implements the same methods as the Vector class, and notifies the JList whenever the data
changes. So a complete program for a non-sorted list display can be as

/** Creates a JList based on an unsorted Defaul tListMdel*/

public class ShowLi st extends JxFrane inplenments ActionListener {
String nanes[]= {"Dave", "Charlie", "Adani, "Edward", "Barry"};
JButton Next;
Def aul t Li st Mbdel | dat a;
int index;

public ShowlList() {
super ("Li st of nanes");
JPanel jp = new JPanel ();
get Cont ent Pane() . add(j p) ;
j p. set Layout (new Bor der Layout ());

//create the ListMdel

| data = new Def aul t Li st Mbdel ();
//Create the Ilist

JLi st nList = new JList(ldata);
/ladd it to the scroll pane

JScrol | Pane sc = new JScrol | Pane();
sc. getViewport().setView nList);
jp.-add ("Center", sc);

JButton Next = new JButton("Next");

//add an el enent when button clicked

JPanel bot = new JPanel ();

j p- add(" Sout h", bot);

bot . add(Next) ;

Next . addActi onLi stener (this);

set Si ze(new Di nensi on(150, 150));
setVisible(true);
i ndex = 0;

public void actionPerformed(Acti onEvent evt) {
i f(index < nanes. | ength)
| dat a. addEl enent (nanes[index++]);

}
In this program we add a “Next” button along the bottom which adds a new name each timeit is

clicked. The data are not sorted here, but it is pretty obvious that if we just subclass the
DefaultListModel, we can have our sorted list and have the elements always sorted, even after
new names are added.

So, if we create a class based on DefaultListM odel which extends the addElement method and
re-sorts the data each time, we'll have our sorted list:

/** This sinple list nodel re-sorts the data every tinme*/
public class SortedMbdel extends Defaul tListMdel {
private String[] datalist;

public voi d addEl enent (Qoj ect obj) {
//add to internal vector
super . addEl enent (obj) ;
//copy into array
dataLi st = new String[size()];
for(int i=0; i< size(); i++) {
dataList[i] = (String)el ementAt(i);

//sort the data and copy it back
Arrays.sort (dataList); //sort data
clear(); //clear out vector

//rel oad sorted data
for(int i =0; i < datalist.length; i++)
super . addEl enent (dataLi st[i]);

//tell JList to repaint
fireContentsChanged(this, 0, size());

}
}

We see thislist in Figure 3. The names are added one at a time in non-alphabetic order each time
you click on the Next button, but sorted before being displayed.

Eg,iList of na... W=l E3

Diave
Edward

Figure 3: Sorted data using SortedListM odel

Sorting More Complicated Objects

Now, suppose that we want to display both first and last names, and want to sort by the last
names. In order to do that we have to create an object which holds first and last names, but which
can be sorted by last name. And how do we do this sort? Well, we could do it by brute force, but
in Java any class which implements the Comparable interface can be sorted by the Arrays.sort
method. And the Comparable interface is just one method:

public int conpareTo(Cbject obj)

where the class returns a negative value, zero or a positive value depending on whether the
existing object is less than, equal to or greater than the argument object. Thus, we can create a
Person class with thisinterface just as smply as

public class Person inplenents Conparable {
private String frnane, |naneg;

public Person(String nanme) {
//split name apart
int i = nanme.indexO (" ");
frname = name. substring (0, i).trim);
| name = nane. substring (i).trim();
}
public int conpareTo(Cbject obj) {
Person to = (Person)obj;
return | name. conpareTo (to.getlLnane ());

}
public String getLnane() {
return | nane;

}
public String getFrnanme() {
return frnane;

}
public String getNane() {

return get Frname()+" "+getLnanme();
}

}
Note that the compareTo method simply invokes the compareTo method of the last name String

objects.

The other change we have to make is that our data model has to return both names, so we extend
the getElementAt method:

/** Data nodel which uses and sorts Person objects*/
public class SortedMbdel extends Defaul tListMdel {
private Person[] datalist;

public voi d addEl enent (Qoj ect obj) {
Person per = new Person((String) obj);
super . addEl enent (per) ;
dat aLi st = new Person[size()];

/'l copy the Persons into an array
for(int i=0; i< size(); i++) {

dataList[i] = (Person)el ement At (i);
}

//sort them
Arrays.sort (datalist);

/land put them back
clear();
for(int i =0; i < dataList.length; i++)
super . addEl enent (dataLi st[i]);
fireContentsChanged(this, 0, size());

public Object getEl enentAt(int index) {
//returns both nanes as a string
Person p = datalist[index];
return p.get Name();

}

public Object get(int index) {
return get El enent At (i ndex);

}

}
Y ou see the resulting sorted names below:

fE3 List of names M=l Eq
Adam Gehr
Dave Kelch
Barry Manilow
Charlie Rook

Edward Sao

Figure 4 — Sorted list using Comparable interface to sort on last names.

Getting Database Keys

Now one disadvantage of a sorted list is that clicking on the nth element does not correspond to
selecting the nth element, since the sorted elements can be in an order that is different from the
order you added them to the list. This, if we want to get a database key corresponding to a
particular list element (here a person) in order to displayed detailed information about that
person, you have to keep the database key inside the person object. Thisis analogous to but

considerably more flexible than the Visual Basic approach where you can keep only one key
value for each list element. Here you could keep several itemsin the person object if that is
desirable. In the figure below, we double click on one person’s name and pop up a window
containing his phone number.

Edam Gehr |
Dave kelch E;i
Barry Manilow Charlie Roak

Charlie Rook I E22-4090

Edward Sao ke |

Figure5— A pop up list showing details appear s when you double click on a name.

In order to pop up awindow when you double click on a JList, you must add a mouse listener to
the JList object. In our code, we created a class called mouseListener which carries out the
listening and produces the popup. First we add the mouseL istener by

nLi st . addMbuselLi st ener (new nouseli stener(nLi st, ldata, db, this));

where db represents out database and Idata the list data model. The complete mouseL istener
classis shown below:

public cl ass nmouselLi stener extends MuseAdapter {
private JList nList;
private DataBase db;
Sort edModel | Dat a;
JFrame j xf;

publ i ¢ nouselLi stener(JList list, SortedMddel |data,
Dat aBase dbase, JFrane jf) {

nList = list;
db = dbase;
jxt =jf;
| Data = | dat a;
}
/1

public void noused i cked(MouseEvent e) {

if (e.getdickCount () == 2) {

/ / mouse doubl e clicked-

/] get database key for this person
int index = nList.locationTol ndex (e.getPoint());
int key = | Data. getKey (index);

//display pop up dial og box
Details details = new Detail s(j xf,

db. get Nane (key), db. getPhone (key));

details.setVisible(true);

Note that since the JList control has no specific methods for detecting a mouse double click, we
check the mouseClicked event method and see if the click count is 2. If it is, we query the
database for the name and phone number of the person with that key. In the example code
accompanying this article, we smulate the database with a simple text file so that the code
example does not become unwieldy.

Picturesin our List Boxes

The JList isflexiblein yet another way. Y ou can write your own cell rendering code to display
anything you want in aline of alist box. So you can include images, graphs or dancing babies, if
you want. All you have to do is create a cell rendering class that implements the
ListCellRenderer interface. This interface has but one method called

getListCellRender er Component and is quite smple to write. By simply extending the JLabel
class, which itself allows for images as well as text, we can display names and images alongside
each name with very little effort. We assume that each Person object now contains the image to
display:

public class cell Renderer extends JLabel inplenents ListCell Renderer {

publ i ¢ Conponent getLi st Cel | Render er Conponent (JLi st 1i st,
Obj ect value, int index, bool ean isSelected,
bool ean hasFocus) {
Person p = (Person)value; //get the person
set Text (p.getNarme ()); //display nane
setlcon(p.getlcon ()); //and inage
i f(isSelected)
set Background(Col or.lightGay);
el se
set Background(Col or.white);
return this;
}
}
Of course we also connect this cell renderer class to the JList with this ssmple method call:

nLi st.set Cel | Renderer (new cel |l Renderer());
The resulting display is shown in Figure 6.

E‘-“';f’,i' Image names M=l

,@:'Q Adam Gehr

E Dave Kelch
R Barry Manilow

Figure 6—A sorted list with pictures added using a custom cell renderer.

Listing to Bow

In summary, it takes only alittle effort to realize the power inherent in the JList component. Y ou
can use it to make sorted lists, or even sorted picture lists. In addition, you can sort on more
complex properties by providing classes that implement the Comparable interface.

