
Unchained Malady
James W. Cooper

toc: Here’s a simple way to expand the number of tests you make on a set of values
without writing spaghetti code.

deck: The Chain of Responsibility pattern can help you write code that is easier to
modify.

Some years ago, I became interested in the technology of data handling for competitive
swimming, and as a hobby developed a set of programs for running swim meets and
managing swim team records. [A hobby is a business (labsoftware.com) that doesn’t
make any money.]

Recently I was presented with a problem in these programs that was difficult to solve,
and it got me to thinking about how Design Patterns might have helped me out of this
tangle. The current software is the sixth generation of a simple program written in Basic,
and it is written in Visual Basic. VB has some OO features but as a language system, it
doesn’t particularly encourage or support OO approaches.

This is another way of saying “if I only knew then what I know now,” which is a
common programmer’s complaint in all languages. You learn a lot in writing a complete
system and you could always do this better if you had the time to rewrite the system
based on what you’ve learned. In this case, we’ll assume that my learning includes both
design patterns and the fact that Java might be a superior way to tackle this system.

A Tangle of Times
In order to solve this problem, we have to define it carefully. End of season
championship swim meets frequently have qualifying times. In other words, you have to
have gone this fast in this distance and stroke to enter the meet. For youngsters, these cut
off times are further defined by age group as well as by sex. So the problem of selecting
swimmers from your team’s roster who qualify for an event would seem to be quite
simple: for each event, look for swimmers who have times faster than the established
standard and enter them in the meet. But, of course it is more complicated than that. In
the next three paragraphs, I’m going to give you a simplified explanation of the problem.
The actual problem is worse, but the simplified version is enough to get us back to OO
programming sooner.

In the US there are “short course” and “long course” pools. The shorter pools are 25
yards, and the longer “Olympic-size” pools are 50 meters. It is not possible to convert
times achieved in these two courses because there are a different number of turns in a
race and there simply is no analytic algorithm for such a conversion. Instead, qualifying
times are usually posted for both courses. So the entry algorithm is: If the swimmer has a
time in the course the meet is to be swum in, use that. Otherwise, check to see if they
have a qualifying time in the other (nonconforming) course, and use that.

Now consider the fact that swimmers have to qualify somewhere. So qualifying meets are
held for swimmers who have not achieved this standard yet. If a swimmer has a time
slower than the standard, enter them in the qualifying meet. Since this could cut too wide

a swath, a more common case is to enter the kid in the qualifying meet if his time is
slower than the championship meet standard, but faster than some arbitrary slower time
that is used to keep out the rank beginners. So now, we have an algorithm that says: if the
swimmer has a time slower than the standard but faster than some slower standard, enter
them in the qualifying meet.

Now, this final fillip is where it gets tricky. Supposing a swimmer has a qualifying time
in the non-conforming course but not in the conforming course. That means he can
legitimately enter the championship meet. But suppose he wants to compete to obtain a
time in the conforming course. Should this be allowed? The organization decided that this
should not be allowed, making the decision of who is legitimately entered that much
more difficult. It was this change in policy that made me throw up my hands and say it
was too hard to change the code quickly, and it would lead to a spaghetti code of if-
statements that I couldn’t guarantee would work soon enough for the now just-ended
season.

Trying A New Pattern
Now if I had used better OO principles and an appropriate design pattern, would I have
been better off? Emphatically yes. Let me briefly outline the Chain of Responsibility
pattern. You use this pattern when you want several classes to attempt to handle some
kind of request without any of them having knowledge of the other classes or their
capabilities.

For example, in a Help system you might have specific help on one visual control, more
general help for a group of related controls and even more general help for the entire
window. You start with help at the most local level and search upward until you find a
help message that has been implemented. The way to do this is to have a series of classes
linked together in a chain, with each one forwarding to the next if it can’t satisfy the
request.

New button File button All buttons

All controls General help

Figure 1- A model of a Help system using the Chain of Responsibility pattern,

Figure 1 shows a Chain of Responsibility for a Help system for a simple user interface.
The interface has a File button and a New button. If you ask for help, it the control
receiving the help request sends it to the chain until one item in the chain can satisfy the
request and display the appropriate level of help. Thus, if you have not written help for
every element, the next more general help is shown instead.

Additionally, the Chain of Responsibility pattern helps keep separate the knowledge of
what each object in a program can do. Objects don’t need to know about other related
objects, and the each can act independently.

Chains of Responsibility also are frequently used in compilers and interpreters, where
you recognize language tokens in a group on a stack and then send the stack frame
pointer to a chain until one can act on it. They probably have lots of other uses I haven’t
yet come across, but it occurred to me that this swimming cutoff time problem is one that
is amenable to this pattern.
In both the Help system example and the compiler-interpreter example, the request is
passed along the chain of objects, each one examines the request and acts on it if it can.
Otherwise, it sends it on along the chain. Another way to build such a system is to have
each object act on the request and pass it along as well. This would mean that each object
could further modify a decision made by a previous object without knowing whether it
was the first, last, or only object in the chain.

Swimmers in Chains
Now let’s actually write some Java. We’ll start by defining an interface for a Chain:
//The basic Chain interface
interface Chain {
 //add an element to the chain
 public void addChain(Chain c);
 //get the next object in the chain
 public Chain getChain();
 //send data requests along the chain
 public void sendToChain(Swimmer swmr, Event evnt);
}
For simplicity, we’ll define a Swimmer object as one who has a single time in each of
two courses, and ignore the complication that there are multiple strokes and distances.
Our Swimmer will just have a name, two times (conforming course and nonconforming
course) and a flag that indicates whether he is eligible to swim in this meet.
//a simple Swimmer object
public class Swimmer {
 //name
 private String firstName, lastName;
 //whether eligible to enter event
 private boolean eligible;
 //times in conforming nad nonconforming course
 private float stime, nctime;

 public Swimmer(String frname, String lname) {
 firstName = frname;
 lastName = lname;
 }
 //set the times
 public void setTimes(float time, float ncTime) {
 stime = time;
 nctime =ncTime;
 }
 //get the times
 public float getTime() {

 return stime;
 }
 public float getNcTime() {
 return nctime;
 }
 //set whetehr eligible
 public void setEligible(boolean b) {
 eligible = b;
 }
 public boolean getEligible() {
 return eligible;
 }
 //get the name
 public String getName() {
 return firstName+" "+lastName;
 }
}

Likewise, we’ll define an event as having a stroke and distance and fast and slow cutoff
times for both the conforming and nonconforming course:
//an Event object
public class Event {
 private int eventNumber;
 private String strokeName;
 private int distance;
 private float slowCut, fastCut;
 private float ncSlowCut, ncFastCut;
 //save event number, distance and strokt
 public Event(int number, int dist, String stroke) {
 eventNumber = number;
 distance = dist;
 strokeName = stroke;
 }
 //save the slow cuts
 public void setSlowCuts(float slow, float ncSlow) {
 slowCut = slow;
 ncSlowCut = ncSlow;
 }
 //save the fast cuts
 public void setFastCuts(float fast, float ncFast) {
 fastCut = fast;
 ncFastCut = ncFast;
 }
 //return the cut you ask for
 public float getSlowCut() {
 return slowCut;
 }
 public float getFastCut() {
 return fastCut;
 }
 public float getNcSlowCut() {
 return ncSlowCut;
 }
 public float getNcFastCut() {
 return ncFastCut;
 }

}

Building Your Own Timing Chain
Now what about this chain? The crucial technical breakthrough is realizing that rather
than setting an eligible/ineligible Boolean in a set of if-statements, it is much better to
keep that flag inside the Swimmer object. Then each chain element can set the flag to
eligible/no eligible depending on the result of its test. And each element thus needs to
make only one test. Rather than writing a bunch of complicated tests, you string together
a set of simple tests in a chain. You just have to make sure that the chain goes from least
to most restrictive. Here’s a basic chain element that tests for a time faster than the slow
cut:
//Check a swimmer's time in a chain
public class TimeChain implements Chain {
 protected Chain chain;
 public TimeChain() {
 chain = null;
 }
 public void addChain(Chain c) {
 chain = c;
 }
 public Chain getChain() {
 return chain;
 }
 //check to see if swimmer's time is faster than slow cut
 public void sendToChain(Swimmer swmr, Event evnt) {
 if (swmr.getTime () <= evnt.getSlowCut ())
 swmr.setEligible (true);
 else
 swmr.setEligible (false);
 System.out.println("TimeChain:"+swmr.getEligible ());
 sendChain(swmr, evnt);
 }
 //test for null and send to next chain element
 protected void sendChain(Swimmer swmr, Event evnt) {
 if(chain != null)
 chain.sendToChain (swmr, evnt);
 }
}
We can derive the rest of the chain elements from this one, so the amount we have to
rewrite is very small indeed. Here is the one that tests for a time slower than the fast cut:
public class sTimeChain extends TimeChain {
 //check to see if swimmer's time is slower than fast cut
 public void sendToChain(Swimmer swmr, Event evnt) {
 if(swmr.getTime () > evnt.getFastCut ())
 swmr.setEligible (true);
 else
 swmr.setEligible (false);
 System.out.println("sTimeChain:"+swmr.getEligible ());

 sendChain (swmr,evnt); //send along chain
 }
}

Overall here, we create 4 little classes for the four tests we’ve described and connect
them together in a chain. Here is the code that sets this all up. The times were taken from
standards for 11-12 girls 100-yard breaststroke at a qualifying meet.
public class ChainSwim {
 public ChainSwim() {
 //set up the event
 Event evnt = new Event(2,100,"Breast");
 evnt.setFastCuts (121.0f, 136.5f);
 evnt.setSlowCuts (132.99f,149.49f);
 //set up a swimmer
 Swimmer Evelyn = new Swimmer("Evelyn", "Earnest");
 Evelyn.setTimes (123.5f, 131.0f);
 //set up the timing chain
 TimeChain timeChn = new TimeChain();
 sTimeChain stChn = new sTimeChain();
 timeChn.addChain (stChn);
 ncTime nctChn = new ncTime();
 stChn.addChain (nctChn);
 sNcTime snChn = new sNcTime();
 nctChn.addChain (snChn);

 //begin the tests
 timeChn.sendToChain (Evelyn, evnt);

 //and print out the result
 System.out.print(Evelyn.getName ()+" is ");
 if(! Evelyn.getEligible ())
 System.out.print("not ");
 System.out.println("eligible");
 }
 static public void main(String argv[]) {
 new ChainSwim();
 }
}

We defined this swimmer so she qualified for the meet based on her conforming times
but not based on her non-conforming times. We designed each of the timing chain classes
so it prints out its decision, so we can monitor the decisions it makes, in case we got one
wrong. Here are the results:
TimeChain:true
sTimeChain:true
ncTime:true
sNcTime:false
Evelyn Earnest is not eligible

As you can see, it found her eligible until the very last test.

Advantages of Chains
One great advantage to taking these tests apart and putting them in a chain of objects is
that you can add more at any time. I alluded to further complexity earlier. Some of that
lies in the fact that even in the US and Canada there are really 3 courses to consider, the

other being 25- meter pools. In the UK they recognize a wide variety of other pool
lengths based on the fact that there are a wider variety of pools in the UK. This system is
adaptable to more courses and more distances very easily.

Diagramming Our Chains
It is sometimes instructive to see that this is really quite a simple and extensible system
by looking at its UML diagram, as we show in Figure 2.

Figure 2- The UML diagram of our timing chain of responsibility.

To review, we start with a Swimmer and an Event object, and a Chain interface. We
implement the Chain interface in TimingChain, and then derive the remaining classes
from it.

Concluding the Chain
We’ve seen here that the Chain of Responsibility takes a set of decisions and puts on in
each object and passes the data long so each object can work on it. The objects can then
decide to pass it on or not based on what they are to accomplish. In a real-life situation
you also need to decide what to do when the data does not match any of your
preconceived notions. You can fail silently, pass the data to an error handler chain object
or take some default action. Any of these are possible, based on the last item in the chain.
In any case, it’s a far simpler and more flexible system than a page of if-else tests and
flags.

James W. Cooper is the author 13 books, most recent of Java Design Patterns: A Tutorial,
published by Addison-Wesley in 200. He is also the president of Lab Software
Associates, which loses money supplying swimming software.

