Unchained Malady
James W. Cooper

toc: Hereé' sasmple way to expand the number of tests you make on a set of values
without writing spaghetti code.

deck: The Chain of Respongbility pattern can help you write code that is eesier to
modify.

Some years ago, | became interested in the technology of data handling for competitive
swimming, and as a hobby developed a set of programs for running swim meets and
managing Swim team records. [A hobby is a business (labsoftware.com) that doesn't
make any money.]

Recently | was presented with a problem in these programs that was difficult to solve,
and it got me to thinking about how Design Patterns might have helped me out of this
tangle. The current software is the Sixth generation of a smple program written in Basic,
and itiswritten in Visua Badc. VB has some OO festures but as alanguage system, it
doesn't particularly encourage or support OO approaches.

Thisis another way of saying “if | only knew then what | know now,” whichisa
common programmer’ s complaint in dl languages. Y ou learn alot in writing acomplete
system and you could aways do this better if you had the time to rewrite the system
based on what you' ve learned. In this case, we |l assume that my learning includes both
design patterns and the fact that Java might be a superior way to tackle this system.

A Tangle of Times

In order to solve this problem, we have to define it carefully. End of season
championship swim meets frequently have quaifying times. In other words, you have to
have gone this fast in this distance and stroke to enter the meet. For youngsters, these cut
off times are further defined by age group aswell as by sex. So the problem of sdlecting
swimmers from your team’ s roster who qudify for an event would seem to be quite
ample: for each event, look for swimmers who have times fagter than the established
gandard and enter them in the meet. But, of course it is more complicated than that. In
the next three paragraphs, I’'m going to give you a smplified explanation of the problem
The actud problem isworse, but the smplified verson is enough to get us back to OO
programming Sooner.

In the US there are “ short course” and “long course” pools. The shorter pools are 25
yards, and the longer “Olympic-size” pools are 50 meters. It is not possible to convert
times achieved in these two courses because there are a different number of turnsin a
race and there Smply is no andytic agorithm for such a conversion. Ingtead, qudifying
times are usudly posted for both courses. So the entry dgorithm is If the svimmer hasa
time in the course the meet isto be swum in, use that. Otherwise, check to seeif they
have a qudifying time in the other (nonconforming) course, and use that.

Now congider the fact that svimmers have to qualify somewhere. So quaifying meets are
held for swimmers who have not achieved this standard yet. If aswimmer hasatime
sower than the standard, enter them in the qualifying meet. Since this could cut too wide

aswath, amore common caseisto enter the kid in the quaifying meet if histimeis
dower than the championship meet stlandard, but faster than some arbitrary dower time
that is used to keep out the rank beginners. So now, we have an agorithm that says. if the
swimmer has atime dower than the standard but faster than some dower standard, enter
them in the qualifying mest.

Now, thisfind fillip iswhereit gets tricky. Supposing asvimmer has a qudifying time

in the non conforming course but not in the conforming course. That means he can
legitimately enter the championship meet. But suppose he wants to compete to obtain a
timein the conforming course. Should this be alowed? The organization decided that this
should not be alowed, making the decision of who is legitimately entered that much
more difficult. It was this change in policy that made me throw up my hands and say it
was too hard to change the code quickly, and it would lead to a spaghetti code of if-
satementsthat | couldn’t guarantee would work soon enough for the now just-ended
Season.

Trying A New Pattern

Now if | had used better OO principles and an appropriate design pattern, would | have
been better off? Emphatically yes Let me briefly outline the Chain of Responsibility
pattern. Y ou use this pattern when you want several classes to attempt to handle some
kind of request without any of them having knowledge of the other classes or their
capabilities.

For example, in a Help system you might have specific help on one visud control, more
generad help for agroup of related controls and even more generd help for the entire
window. Y ou start with help at the most locd level and search upward until you find a
help message that has been implemented. The way to do thisisto have a series of classes
linked together in achain, with each one forwarding to the next if it can't satisfy the
request.

New button File button All buttons

All controls [—® General help

Figure 1- A modd of aHedp sysem using the Chain of Responghility pattern,

Figure 1 shows a Chain of Responghility for aHelp system for asmple user interface.
The interface has a File button and a New button. If you ask for help, it the control
receiving the help request sendsiit to the chain until one item in the chain can satisfy the
request and display the appropriate level of help. Thus, if you have not written help for
every eement, the next more genera help is shown instead.

Additiondly, the Chain of Responsihility pattern hel ps keep separate the knowledge of
what each object in a program can do. Objects don’t need to know about other related
objects, and the each can act independently.

Chains of Responsbility aso are frequently used in compilers and interpreters, where
you recognize language tokens in agroup on a stack and then send the stack frame
pointer to achain until one can act on it. They probably have lots of other uses| haven't
yet come across, but it occurred to me that this swimming cutoff time problem is one that
is amenable to this pattern.

In both the Help system example and the compiler-interpreter example, the request is
passed aong the chain of objects, each one examines the request and actson it if it can.
Otherwise, it sends it on dong the chain. Another way to build such asysemisto have
each object act on the request and pass it along as well. This would mean that each object
could further modify a decison made by a previous object without knowing whether it
wasthefirgt, lagt, or only object in the chain.

Swimmers in Chains
Now let’'s actudly write some Java We Il gart by defining an interface for a Chain:

/1 The basic Chain interface
interface Chain {
//add an elenment to the chain
publ i c void addChai n(Chain c);
/1 get the next object in the chain
publ i c Chai n get Chain();
/lsend data requests along the chain
public void sendToChai n(Swi nmer swnr, Event evnt);
}
For amplicity, we'll define a Svimmer object as one who has asingle timein each of

two courses, and ignore the complication that there are multiple strokes and distances.
Our Swimmer will just have a name, two times (conforming course and nonconforming
course) and aflag that indicates whether heis digible to swim in this meet.

//a sinple Swi mer object
public class Sw mer ({
/I name
private String firstNanme, |astNane;
/Iwhether eligible to enter event
private bool ean eligible;
/[/times in conform ng nad nonconformn ng course
private float stime, nctinme;

public Swinmrer(String frname, String | name) {
firstName = frnane;
| ast Name = | nane;
}
//set the tinmes
public void setTines(float time, float ncTinme) {
stime = tine;
nctime =ncTi nme;
}
//get the tines
public float getTinme() {

return stine;

public float getNcTime() {
return nctime;
}

//set whetehr eligible
public void setEligible(boolean b) {
eligible = b;

publi c bool ean getEligible() {
return eligible;
}

//get the name
public String getNanme() {

return firstNanme+" "+l ast Nane;
}

}

Likewise, we |l define an event as having a stroke and distance and fast and dow cutoff
times for both the conforming and nonconforming course:

/lan Event obj ect
public class Event {

private int eventNunber;

private String strokeNane;

private int distance;

private float slowCut, fastCut;

private float ncSl owCut, ncFastCut;

// save event nunber, distance and strokt

public Event(int nunber, int dist, String stroke) {
event Nunber = nunber;
di stance = di st;
strokeNane = stroke;

}

//save the slow cuts

public void setSlowCuts(float slow, float ncSlow) ({
sl owCut = sl ow,
ncSl owCut = ncSl ow,

}

//save the fast cuts

public void setFastCuts(float fast, float ncFast) {
fastCut = fast;
ncFast Cut = ncFast;

}

/lreturn the cut you ask for

public float getSlowCut() {
return sl owCut;

}
public float getFastCut() {
return fastCut;

}
public float getNcSl owCut () {
return ncSl owCut ;

}

public float getNcFastCut() {
return ncFast Cut;

}

}

Building Your Own Timing Chain

Now what about this chain? The crucia technica breakthrough is redizing thet rather
than setting an digibleindigible Boolean in a st of if-statements, it is much better to
keep thet flag inside the Swimmer object. Then each chain eement can st theflag to
eligible/no digible depending on the result of its test. And each eement thus needsto
make only onetest. Rather than writing a bunch of complicated tests, you string together
aset of ampletestsin achan. You just have to make sure that the chain goes from least
to mogt redtrictive. Here s abasic chain ement that tests for atime faster than the dow
cut:

/1 Check a swimrer's time in a chain
public class TineChain inplenents Chain {
protected Chain chain;
public TinmeChain() {
chain = null;
}

public void addChai n(Chain c) {
chain = c;

}

public Chain getChain() {
return chain;

}

/lcheck to see if swinmer's tinme is faster than slow cut
public void sendToChai n(Swi nmer swnr, Event evnt) ({
if (swnr.getTime () <= evnt.getSlowCut ())
swnr . setEligible (true);
el se
swir . setEligible (false);
Systemout.println("Ti meChain:"+swnr.getEligible ());
sendChai n(swmr, evnt);
}
//test for null and send to next chain el enent
protected void sendChai n(Swi mer swnr, Event evnt) {
if(chain = null)
chai n. sendToChain (swnr, evnt);
}
}
We can derive the rest of the chain dements from this one, so the amount we have to

rewriteisvery smdl indeed. Hereisthe one that testsfor atime dower than the fast cut:

public class sTinmeChain extends Ti neChain {
//check to see if swinrer's tinme is slower than fast cut
public void sendToChai n(Swi nmer swnr, Event evnt) {
if(swr.getTime () > evnt.getFastCut ())
swnr . setEligible (true);
el se
swir. setEligible (fal se);
Systemout. println("sTi meChain:"+swmr.getEligible ());

sendChain (swmr,evnt); //send along chain

}

Overdl here, we cregte 4 little classes for the four tests we' ve described and connect
them together in achain. Hereisthe code that setsthisal up. The times were taken from
standards for 11-12 girls 100-yard breaststroke at a qualifying meet.

public class Chai nSwi m {
public ChainSwi n() {
//set up the event
Event evnt = new Event(2, 100, "Breast");
evnt . set Fast Cuts (121.0f, 136.5f);
evnt.set Sl owCuts (132.99f, 149. 49f);
//set up a sw nmmer
Swi nmer Evel yn = new Swi nmrer (" Evel yn", "Earnest");
Evel yn. set Ti mes (123.5f, 131.0f);
/lset up the timng chain
Ti meChain ti meChn = new Ti meChai n();
sTi meChai n st Chn = new sTi meChain();
ti meChn. addChai n (st Chn);
ncTi me nct Chn = new ncTi ne();
st Chn. addChai n (nct Chn);
sNcTime snChn = new sNcTime();
nct Chn. addChai n (snChn);

//begin the tests
ti meChn. sendToChai n (Evel yn, evnt);

//and print out the result
System out. print(Evelyn.getName ()+" is ");
i f(! Evelyn.getEligible ())
Systemout.print("not ");
Systemout.printin("eligible");
}

static public void main(String argv[]) {
new Chai nSwi () ;
}

}

We defined this swimmer so she qudified for the meet based on her conforming times
but not based on her non-conforming times. We designed each of the timing chain classes
S0 it prints out its decision, so we can monitor the decisons it makes, in case we got one
wrong. Here are the results:

Ti meChai n: true

sTi meChai n: true

ncTime:true

SNcTi ne: f al se

Evel yn Earnest is not eligible

Asyou can seg, it found her digible until the very last test.

Advantages of Chains

One great advantage to taking these tests gpart and putting them in a chain of objectsis
that you can add more at any time. | aluded to further complexity earlier. Some of that
liesin the fact that even in the US and Canada there are redly 3 courses to consider, the

other being 25- meter poals. In the UK they recognize awide variety of other pool
lengths based on the fact that there are awider variety of poolsinthe UK. Thissystem is
adaptable to more courses and more distances very easly.

Diagramming Our Chains

It is sometimes indructive to see that thisis redly quite asmple and extensible sysem
by looking at its UML diagram, as we show in Figure 2.

zinterfaces
Chain
{fom detault]
{lacal to package}
+acddhaln
+getlihain
+aendTolhain
#ch@in 0.1
b
|
I
|
TimeChain
[from defauti]
!
i
!
] i slimeChain
nclime :
sNcTime (from defaut]
ffrom defaut]
[from default) E
yoaH) - !
o o / P 5 4 [
* & .] i/ ! lll"x - !
\ ¥ P ; G ;
y - ! s !
\ o o ! h -
| v /] 2 /
L«uses» ﬁ%@iﬂsw L ygusess Jousest
: s
Swimmer ki Event
{from defaul] T P {from defaut
P -,
: e 4
+3wi MMEF | susess susess +Event
+getEligible +ietFastCut
+QETNEWE +getMcFastCut
+gethlcTime +oethleSlowCut
+getTime +oet SlowCut
+setEligible +setFastCuts
+zetTimes

+setSlowCuts

Figure 2- The UML diagram of our timing chain of responghility.

To review, we start with a Swimmer and an Event object, and a Chain interface. We
implement the Chain interface in TimingChain, and then derive the remaining classes
fromit.

Concluding the Chain

WEe ve seen here that the Chain of Responsibility takes a set of decisons and putsonin
each object and passes the datalong so each object can work on it. The objects can then
decide to passit on or not based on what they are to accomplish. In ared-life Stuation
you aso need to decide what to do when the data does not match any of your
preconceived notions. Y ou can fail slently, passthe datato an error handler chain object
or take some default action. Any of these are possible, based on the last item in the chain.
Inany casg, it'safar smpler and more flexible system than a page of if-else tests and

flags.

James W. Cooper is the author 13 books, most recent of Java Design Patterns. A Tutoridl,
published by Addison-Wedey in 200. He is dso the president of Lab Software
Associates, which loses money supplying svimming software.

