WHY | FINALLY LEARNED TO LOVE SERVLETS

James W. Cooper

I’ ve been deeply immersed in Java for severa years now, and the idea of returning to clunky
HTML forms and JavaScript didn’t really appea to me. However, there are some cases where a
Java applet is either inappropriate or overkill for a particular system’s web pages. Some of the
reasons that have occurred to me include

1. Weonly want to return static data from the server to the client.
There are no expansions or multiple views of that data.

The number of user interactions is small and ssimple.

The user community has a diverse and unpredictable set of browsers.

o~ DN

RMI is not tractable because of problems with firewalls, or religious issues.

S0, in anutshell, there are cases now and in the foreseeable future where a ssmple forms-based
user interface is the easiest way to get information to users via the web.

So, if we're just going to write a simple query form, where' s the beef (or Java)? Well, let’ s not
forget the server.

Let’ s suppose we have atypical application for an HTML form page, where we want to look up
alist of people in an organization, or find out someone’ s phone number or address. We type the
name into afield, check off some buttons restricting the search and click on the “submit” button.
As you probably know, this sends a data stream back to the server in the form of a CGlI
(Common Gateway Interface) request. Usually, that request includes a stream of these selectable
parameters from the web page, and the name of an executable program that the server isto run.
That program then will parse the rest of the stream, act on it, look up the answer in atable or
database, and generate an HTML output page to send back to the client.

Asusual, the devil isin the details. Parsing that convoluted stream is a bit of work, although
there are lots of C libraries and perl scripts that can do it. There is also a package of Java routines
that can handle these CGI data streams very efficiently. These are available as a set of jar filesin
the Java Servlet Development Kit (JSDK). A Java servlet is a small Java program that can extend
the HTML request and response service and parse that CGI stream using convenient high-level
classes and methods. Then it can call any other Java methods or use any other available data to
produce an output HTML page.

Now, when you write a CGI-script in other languages, you point the browser to the actual
program that will parse that form’s data stream:

http://sonmeserver/cgi-bin/ get Dat a. pl
or

http://soneserver/cgi-bin/ get Dat a. exe

and the web server knows that it is to execute these programs. Since Java programs are executed
through a Java interpreter program, you can’t just point to a class file and have it executed.
Instead, most web servers (except Microsoft’s 11S) can be configured to launch Java servlets. But

even though you may be running 1S on Windows NT, you can still use servlets. There are a
number of solutions we'll discuss later below.

Why Bother with Servlets?

If you've never written a C program or perl script for handling a CGI request, the reasons for
using a servlet are obvious: it'sin Java. Even if you have written such programs in the past
you' Il quickly realize that you didn’t really want to revisit al of the inelegancies of those two
languages compared to Java.

There are some more substantive reasons for using servlets, however. Since the servlet running
program keeps the Java servlet loaded once it is requested, future requests from that or from
other clients will run much faster than C or perl programs which must reload the entire program
infrastructure once they are called. Finally, writing servietsin Javais so simple, it issilly to use
more complicated approaches. Occam’ s razor strikes again!

Onereason | had never bothered with servlets before is that in my work environment, | had a
great network and up to date software, and could count on people being able to use Java applets
and RMI. So even though | controlled the server, the nature of my research did not ever
encompass the simple static lookups that CGI programs excel at.

At home, | maintained a few web sites as a hobby, but the server was at a web hosting ISP in
Virginia, and | had no way to install and test servlets. Recently, however, | was able to obtain a
cable modem, and have a direct internet connection. While | couldn’t run a huge web site on this
system, | certainly could answer afew database queries.

The Problem Statement

| was presented with the simple problem of providing aweb site for Connecticut Swimming,
where users could look up the correct name and membership ID number of all the swimmers on
each team. Thisis not just a static list problem, because both the teams and their members
change quite often.

This seemed like an ideal case for asmple CGI query and servlet connection to a database of all
the swvimmersin the state. As| saw it, there were two screens:

1. Show alist of teams to select from.
2. Show alist of swimmers on the selected team.

Both of these screens require database queries. For the first, we need to obtain a current list of
teams, and for the second a list of swimmers for the selected team. So both screens must be
generated dynamically by servlets. The team selection screen is shown below:

Bz E® Wes B Comnuncso Help
T Bach oo Febat Homs Gemch Nehmae Find Secum o ﬂ

Connecticut Swimming Database Queries

Thr pages helps you g Jock up swimmers by team, to find ot ther names and 3T mambecs.

& Bath sexes Do
RALC
W BE&R

[ceT
© Men COEW
CepL
EDST
EHED

FFLY =]
Lock L =
2ot L B

gt il o T [rEsae

The form components in this table are defined for the age buttons as:

<input type="radi 0" name="Ages" value="All" >All ages
<input type="radi 0" name="Ages" val ue="12U'> 12 and under
<input type="radi 0" name="Ages" val ue="130'> 13 and over

and for the sex selection buttons as

<i nput type="radi 0" name="Sex" val ue="Bot h">Both sexes
<input type="radi 0" name="Sex" value="F'> \Wnen
<i nput type="radi 0" nanme="Sex" val ue="M > Men

Note that all 3 radio buttons of the first group are named Ages and al three of the second group
are named Sex. It is these group names that we use to find out which button has been selected.

Writing the Servlet

When you send data from a form to aweb server, you use either the GET or the POST method.
Originally, these were quite different in implementation with POST being more robust.

However, in servlets, they are essentially identical and you can use either one interchangeably.
The beginning of the Form section of the web page specifies the posting method and the machine
to send the requests to:

<form acti on=http://bl ahbl ah. com 8080/ servl et/ CTSwi m net hod=GET>

This line sends the contents of the form to port 8080 (the default servlet port) of the server
blahblah.com, specifies the CTSwim servlet and uses the GET method to send the form data to
the servlet. The web server tells the servlet runner system to load this CTSwim program,
initialize it and then calls its doGet method.

The actual servlet code is very smple, and you can easily learn to write one from the examples
supplied with the Java Servlet Development Kit (JSDK).

public class CTSwi nServl et extends HtpServlet
i mpl enent's Si ngl eThr eadMbdel {

prot ect ed Database db; /| dat abase we talk to

public void init(ServletConfig svg)
throws Servl et Exception{
/I open dat abase during initialization
db = new Dat abase("sun. j dbc. odbc. JdbcQdbcDri ver");
db. Open ("j dbc: odbc: CTSwi 99", nul |) ;

public void doGet (HttpServletRequest req, HttpServl et Response res)
throws Servl et Exception, |OException {

}
}

In the above example, we see aan init method, which is called once when the servlet engine first
loads and initializes your servlet. Just asin applets, the init method take the place of the
constructor. Thisis an ideal place to perform one-time initialization tasks such as connecting to a
database or opening special template files.

The doGet method is called when a GET method is called. Here, we get the parameters by name
to decide the nature of the query to send to the database. Each of the radio buttons has the same
name parameter, but a different value parameter. The three values for the Ages buttons are All,
12U and 130. For example we can set the age range as follows:

/112 and under
if (req.getParaneter("Ages").equal s("12U")) {
maxage 12
m nage

0;

/113 and over

if (req.getParaneter("Ages").equal s("130')) {
maxage 100

m nage

1

13;

}
Then we can construct the query to the database and generate the output HTML file as shown
below:

Team Query - Netscape

File Edt View Go Communicator Help

v| Back Fomwerd: Reload Home Search Metscape Frint Security E.ﬂ

Members of AJSC

Jessica Cameron F 012990JES*CANWE 1990-01-2% 9
Allisen Fale Allison F 101189ATIBGATE 198%-10-11 &
Ellen Hewitt Ellen F 112186ELLEHEWI 1%86-11-21 12
Corina Matwro Corina F 10278BCORCKATIT 1988-10-27 10
Jennifer O'Mel Jennifer F 021489JENMONEI 158%-02-14 10
Marvanna Saenko Marvanna F 08108EMAR*SAEN 1988-08-10 10
Elizabeth Shand Elizabeth F 011590ELIASHATN 1590-01-1% &
Alexandna Ulkleja Alex F 062487ALEMUELE 1587-06-24 11
Aghley Ulleja Ashley F 062487ASHMUELE 1587-06-24 11
Diana WVermnal Dana F 072388DANSVERN 1988-07-23 10

[=F == | Dacument: Done Bl s SR | 2

Sending the output just amounts to writing data to the output channel we can obtain from the
HTTPServietResponse object.

PrintWiter out = res.getWiter();
res. set Content Type("text/htm");

out.println("<htm >");
out.println("<head><title>Team Query</title></head>");
out. println("<body>");

String team = req. get Paraneter ("teans"); /] get team nane
out.println("<hl>"+"Menbers of "+team+"</hl>");

Then we query the database and write out atable aline at a time with the various database fields
we need as table cells.

AreThereReally Two Servlets?

The first screen we showed above shows a list box of team initials and radio buttons for age and
sex. Since the teams change frequently, that list must be generated from the database each time a
guery begins. Thus, it would seem that we need to create that page with the current team list
using a second servlet.

On the other hand, these two pages share a common database and really amount to separate
gueries against that database. So, how can we easily decide what do if there is only one servlet?
The ssimplest way is to use a hidden parameter on the querying web page

<i nput type=hi dden nanme=servl et Type val ue=MakeTeans>

and have a hidden parameter having the servietType name but a different value on each page that
calls your servlet. You obtain the value of this parameter for each request using the
getParameter () method of the HttpRequest object. Then the servlet can check to see which
methods are to be called and dispatch them appropriately. This leads to some ssimplificationsin

our servlet structure. Both of these servlet calls use many of the same methods, and we could
simply check the value of the hidden servietType parameter and call the right method in asingle
servlet class, but it is cleaner and more scalable to make each of these methods a separate class.

Let’s consider a base class called ServietProcessor which contains at least the following:

public abstract class ServletProcessor {
protected HttpServl et Request req;
protected Ht tpServl et Response res;
protected Results rs;
prot ect ed Dat abase db;
protected PrintWiter out;

public void setH tp(HttpServl et Request rqst,
Ht t pSer vl et Response rsp, Database dbase) {

req = rgst;

res = rsp;

db = dbase;
}
R TP
public abstract void Execute(PrintWiter outPrint);
R TP

protected void print (PrintWiter out,
String nanme, String value) {

out.print(" " + name + " :
out.println(value == null ? "& t;none>" : value);
}
R R
protected void print (PrintWiter out,
String nane, int val ue) {
out.print(" " + nane + ": ");
if (value == -1) {
out.println("& t;none>");
} else {
out.println(val ue);
}
}

}
Then for each actual query, you only need to implement the Execute method. For creating the

web page containing the list of teams, this Execute method constitutes the entire class. It isjust:
public void Execute(PrintWiter out) {

String query =
"SELECT d ubs. d ubCode, C ubs.d ubNane” +
FROM O ubs ORDER BY O ubs. C ubCode; ";
Results rs = db. Execute (query);

res. set Content Type("text/htm");
out.println("<htm >");
out.println("<head><title>Team Query</title></head>");
out.println("<body>");
/lread in tenplate html file and fill in teamlist
InputFile fI = new InputFile("CTTQuery. htn'); //get tenplate file
String s = fl.readLine();
while (s.indexOf ("<option>")<=0) {
out.println (s);
s = fl.readLine();

}
whil e (rs. hasMoreEl enents ()) {

out.println ("<option>" + rs.getCol umVal ue ("d ubCode"));
/lrs.nextEl ement ();

}

s = fl.readLine();

while (s '= null) {
out.println (s);
s=f|.readLine();

}
}

The Results and Database classes are the ones we developed when discussing using the Fagade
pattern for handling database manipulations, in the December, 1998 column. The class structure
for the entire servlet and its related classes is shown below:

SernvlatProcessor
from defaul] TeamQuery
+Execute <} ffrom default
#print +Execute
+zetHitp
/ roc 0.1
0.1 #rs MakeTeamlList
Results D"1/#db ffrarn defaul]
from defaut] = Datahase +Execute
frorn default)
#dh\:l..“l

CTSwimServlet
ffrorm defaul)
- serlist

The basic program is the CTSwimServlet. It instantiates one of the subclasses of the abstract
ServletProcessor class for each different servietType parameter value. The two instances in this
simplified example are TeamQuery and MakeTeamList. One clever way for the program to select
the correct class is using a Hashtable where instance of the classes are stored with the servlet
type strings used as keys. Using this simple approach our entire main servlet program becomes
just:
public class CTSw nfServl et extends HttpServl et

i mpl enents Si ngl eThr eadModel {

prot ect ed Database db; / / dat abase we talk to
private Hashtabl e servlList; /1list of servlet proc classes
private ServletProcessor proc = null;

public void init(ServletConfig svg)
throws Servl et Excepti on{
super.init(svg);
db = new Dat abase("sun. j dbc. odbc. JdbcOdbcDri ver");
db. Open ("j dbc: odbc: CTSwi 99", nul |) ;
servLi st = new Hashtabl e();
/ /1 oad hash table with candidate cl asses

servlLi st. put ("MkeTeans", new MakeTeanlist());
servlList. put ("CTSw nifeans", new TeamQuery());

}
[] = e e e e eeiiiiiiiaaoos

public void doGet (HttpServletRequest req, HttpServlet Response res)
throws Servl et Exception, | CException {

String stype = req. get Paraneter("servl et Type");
//sel ec a class based on the servl et Type parneter
proc = (Servl etProcessor)servlLi st.get(stype);
proc.setHtp (req, res, db);
proc. Execute(res. getWiter());
}
}

The nice thing about the simple approach is how easily it scales. As your needs for new queries
grow, you just create new subclasses of ServletProcessor and add them to the hash table on
startup. Since | began this article, I’ ve add 3 more queries to the site, each requiring only a few
minutes programming of a new subclass of ServletProcessor.

Design Patternswe Used this Month

The servletProcessor classis an abstract class that has concrete implementations and qualifies as
asimple version of the Template pattern. The instances of the servletProcessor each have an
Execute method, but are otherwise identical, and can be consider examples of the Command
pattern. The database classes we use to access our data are examples of the Fagade pattern. And
finaly, the hash table encoding trick the helps us select the right instance of the servletProcessor
class amounts to a simple Factory pattern.

Multiple User Accessesto Your Servlet

In areal-world system, many users might make requests to your servlet at once, and each will be
launched as a separate thread. This means that your servlet application must not assume that the
contents of class-level variables are invariant. Y ou can do alot to handle thisif you are careful
with the synchronized keyword, but for the ssmple example here, we smply had our base server
class implement the SngleThreadModel interface. This assures that each user access your servlet
serialy and will prevent thread confusion. Of courseg, if you have a high number of usersthisis
not a sufficiently elegant solution. In this case you should make sure that there are few if any
class-level variables that might get ssomped on and that the rest are accessed only in
synchronized processes.

Running Servletson Your System

The Sun java web site shows 2 Sun servers and 19 third party web servers that support Java
servlets. In addition, there are 5 add on servlet engines, at least 3 of which will work with I1S. If
you just want to try servletsin alow key low traffic test, you can use the servietrunner program
that comes with the original 2.0 version of the JSDK or the startserver script that comes with
JSDK 2.1. These intercept calls to port 8080 (which you can change to other port numbersif you
like) and run with any web server. They are less robust than afull servlet engine, but seem to
work fine for me most of the time.

Installing servlets on your server varies with the server, but amounts to putting the classesin a
particular path and setting some configuration file to contain that path. Thisis documented

clearly for the JSDK 2.0. For JSDK 2.1, if you use the startserver script, you have to create 2
levels of new directories.

1. For aservlet caled swimlinfo, create the directory
...Jjsdk2. 1/ swi m nf o/ EB- | NF/ servl ets

and put all the servlet classesin it.

2. Then, add 2 new linesin the default.cfg:

server. webapp. ti mesheet . mappi ng=/ swi m nf o

server. webapp. ti mesheet . docbase=swi m nf o

3. Run the startserver script;

4. Accessthe servlet using the URL:

| ocal host : port nunber/swi m nf o/ servl et/ what ever cl assnane

L earning More About Servlets

Thereis anice servlet tutorial on the java.sun.com web site. In addition, the examples that come
with the JSDK are pretty revealing. There is also a servlet-interest list on the java.sun.com list
server where you can pose questions to the active servlet community. In additon, Java Serviets
by Jason Hunter, from O’ Reilly books is well-regarded.

