OBJECTS AND RMI

James W. Cooper

Java Remote Method Invocation (RMI) facility is one of the ssimplest and most elegant ways to
write a client-server system. It not only alows you to get numbers or text from the server, you
can exchange objects and do so without having any deep understanding of how objects are
transmitted. Before we talk about how we can use and arrange these objects effectively, let’s
review how RMI works.

Y ou design and implement an RMI system by carrying out the following steps.

1. Write an interface that describes what methods your RMI server object will provide.

2. Then you write the implementation of the server object that implements that interface.

3. Onthe server, you create a main program that registers and launches an instance of the server
object.

To create a stub and skeleton files to represent the server object on the client, you run the
remote object compiler r m c.

Copy the stub and interface files to your client machine.

Write the client application using the interface file to define the classes on the object server.
Start ther m r egi st ry program on the server

Start the remote object server program on the server.

Run the client program, telling it to connect to that particular server.

e

©oNOoO O

A Simple Sales Information System RMI Server

Let’s consider a server system which contains customer information. Y ou can ask the system to
search for any customer by name, and display customer information. Then, you can ask the
system to display details about the customers past orders. So let’s start by designing the
interface:

import java.util.*;
inmport java.rm.*;

public interface CustonerServer extends Renote{
public Vector getCustomers(String nmask) throws RenbteException;
public Vector getOrders(int custonerKey) throws RenoteException;

}

Note that the server must extend the Remote interface and each method must throw a
RemoteException.

The server itself is pretty simple aswell. Listing 1 shows an outline of such a server:

public class RM Server_Inpl extends Uni cast Renpot eoj ect
i mpl enent's Cust onmer Server {
Dat abase db;
String dbNane;

public RM Server _Inpl (String nane) throws RenoteException {
super ();
dbNane = nane;

try {
Nam ng. r ebi nd(nane, this);
} catch (Exception e) {
Systemout. println("rebind exception:"+e. get Message());

db = new Dat abase("sun. jdbc. odbc. JdbcQdbcDri ver");

public Vector getCustoners(String nane) throws RenoteException {
Vector cust = new Vector();

[1***fill vector with Custoner objects froma database query***
return cust;

public Vector getOrders(int key) throws RenoteException {
Vector orders = new Vector();

[1***fill vector with orders from database query***

return orders;

}
Note in our server, we subclass UnicastRemoteObject and implement the methods of our

CustomerServer interface. We assume that the getCustomers method performs some sort of
database lookup and returns a set of Customer objects matching the search mask. We also
assume that given a particular customer key, the getOrders method returns alist of orders for
that customer using a second database query.

In the constructor of this server object, we use the static rebind method of the Naming class to
register the name of the object with the RMI server. To launch this server, we create a master
program that creates an instance of the server object.

inmport java.rm.*;
import java.rm.server.*;

public class RM Server {

public RM Server () {
/!l Create and install the security nmanager
Syst em set Securi t yManager (new RM Securi t yManager());

try {
/1l Create RM Server _| npl

RM Server _I npl server = new RM Server _|Inpl ("RM Server");
} catch (Exception e) {

Systemout. println("Exception: " + e.getMessage());
e.printStackTrace();

public static void main(String args[]) {
new RM Server();
}
}

In Java 2, we can't just start this program directly using a Java VM. We must also set the policy
to allow the program to access sockets to trasnfer data via RMI. Policy files can be very finely
grained in the permissions they grant. On the other hand, avery ssmple policy file for RMI can
just be the following file: test.policy:

grant {
perm ssion java. security. Al | Perm ssion;

b

To start the RMI server, you first issue the command

start rmiregistry
from the directory where the server islocated. Then you can start the server using the following
simple batch file startserver.bat:

java -D ava.security.policy=test.policy RM Server

The Sales Information RM1 Client

The client program must connect to the RMI server and get alocal representation of the server
object. One common way to create this connection is to use a single class to connect to the server
and have it make al the callsto the server object. Here we call it the DataModel class:

public class DataMbdel {
private CustonerServer server;

publ i c DataMbdel (String rm Nanme) {
try {
server = (Custoner Server) Nam ng. | ookup(r m Nane) ;
} catch (Exception e) {
Systemerr.println("System Exception" + e);

/Il search for custoners matching nane mask
public Vector getCustoners(String searchMask) {
Vector cust = new Vector();

try {
cust = server. get Cust oner s(sear chMask) ;

}

catch (RenoteException e) {
Systemout.printin("rm connection failure");

}

return cust;

public Vector getOrders(Customer cust) {
Vector orders = new Vector();

try {
orders = server.getOrders (cust.getKey ());
}

catch (RenoteException e) {
Systemout.printin("rm connection failure");

return orders;

}
We can see the client program that carries out this ssmple search in Figure 1.

Client E

RMIClient
firorm default)
backColor
ctx

cust
custlist
orderlist
Orders
search

d

E;g Customer entry | _ |0

Search |

Anterior antelopes
Fig suitcases
Crepe crawlers

Arrdvark, Andy

Farkle, Fred
Sarong, Sandy
YWences, Senar

Figure 1: A simpleclient to our RMIServer
The complete Client-server object relation is shown in Figure 2.

-SErVEer

DataModel
framm defaut)

T oata | +Databdodel

+getCustomers
+getOrders

Customer
from defaul)
-firsthame
-key
-lasthlame

RMIServer_Impl_Stub
firom default)
1final}
-interfaceHash
-operations
- seralversionUID
-useMewlnvoke

RMIServer_Impl
firom defaul)

+getCustomers

+getOrders

0.1 | dh

Datahase
frarm defaul)
{local to package}

Note that the Server side contains the RMIServer_Impl class which implements the
CustomerServer interface and makes use of the Database class for the data lookup. The Clinet
side consists of the RMISerevr_Impl_Stub which also implements the CustomerServer and acts
as as stand-in for the real RMIServer_Impl class on the server.

Classes Between Clients and Servers

In the above discussion, we created and used a Customer object which contains at the least, the
name and database key for each customer:

import java.util.*;

public class Customer {

private String | astNane; /I names
private String firstName;
private int key; / | dat abase key

public Custoner(String s) inplenments Serializabl e{
// parse custonmer data froman input string
StringTokeni zer tok = new StringTokeni zer(s);
key = new I nteger (tok.next Token ()).intValue();
firstName = tok.next Token();
| ast Nane = t ok. next Token();

public int getKey() {
return key;

public String getNane() {
return | ast Name +", "+firstNane;
}

}

Any object that we want to transmit using RMI must implement the Serializable interface. This
interface has no methods but ssimply sets aflag that allows the RMI system to break down the
object for serial transmission between systems.

In our first program, we fetched the Customer objects, asked each one for its key and made a
separate call back to the server to get the list of orders. When each Customer object is returned
from the server, it does not itself contain any of the order data, although that data should
logically be exclusively part of each Customer’s private information. Rather than asking our
client to retrieve data, we should ask the Customer object to retrieveit.

Let’s assume that the server obtains the customer list from a database:

public Vector getCustoners(String nane) throws RenoteException {
return db. get Custoners (nane);
}

The database object will make the query, and create each Customer object. But if each Customer
object isto keep its own orders, it will have to ask for them when it is created. Thus, each
Customer must keep a reference to the Database object:

public class Custoner inplenents Serializable {
Dat abase db;
Vect or orders;
/'l other variables and nethods omtted
public Custoner(String s, Database datab) {
db = dat ab;
orders = db.getOrders (key);

//----etc. -----
}
Thisisinconvenient for two reasons: the Database object may not be Serializable and thus can’t

be transmitted to the client, and second, the client system needs to have a copy of the Database
object code so it can compile without error. This certainly breaks the kind of client-server
encapsulation we hoped to enforce when we started out. Further, if there are a substantial number

of customersto return, each having afair number of orders, having each customer cache the
orders before returning from the server will have dire performance implications.

Another approach — Making the Customer Smarter

Well, suppose that the Customer object only looks up the orders when asked to, making the
server query only when needed. We could make the getOrders method in the Customer object
make a call to the DataM odel object on the client to get the order Vector from the server

publ i c Vector get Orders(DataMdel dnodel) {
return dnodel . orders(key);
}

This suffers from the same problems: now the Customer object has to know about a client-
specific class, and this information would have to be part of the server system as well so that the
Customer object would compile. Again, this breaks the idea of encapsulation.

Here then is the problem we need to solve:

1. Customer objects should be the only ones to know about orders for that customer.
2. Theclient should not need to know about databases.
3. The server should not need to know about the client’s DataModel connection to the server.

How do we solve these problems? Well, the solution is the same no matter which approach you
take. Y ou either create a doCustomer object which does the queries and exudes a normal
Customer object, or you create a model Customer object which uses the Customer object as an
argument, and encapsul ates that object inside one that does know about the DataM odel object.

In the case where we want the server to look up al the orders ahead of time and return them in
each Customer object, we create a doCustomer class to ook up the orders, but to return a
Customer object:

public dbCustoner(String s, Database datab) {
StringTokeni zer tok = new StringTokeni zer(s);
key = new I nteger (tok.next Token ()).intValue();
firstName = tok.next Token();
| ast Nane = t ok. next Token();
db = dat ab;
orders = db. getOrders (key);

publ i c Custoner getCustomer() {
return new Custoner(firstNane, |astNane, key, orders);
}

In the case where the client creates the new class, we have a class called model Customer which
encapsulates Customer

public class nodel Cust onmer {
private DataMbdel dnodel; / / dat a nodel
/ I encapsul at e custoner obj ect
private Custoner cust;
publ i ¢ nodel Cust oner (Cust oer c¢, DataMdel data) {
dnodel = dat a; //copy in data
cust = c; //and custoner

}
public String get Name() {
return cust.getNanme ();

/luse data nodel reference to get the orders

public Vector getOders() {
return dnodel . getOrders (cust);
}

}
When we fetch the customer Vector from the server in the DataModel class, we create a new
vector of model Customer object which then knows how to fetch their order information when

needed:
public Vector getCustonmers(String searchMask) {
Vector cust = new Vector();
try {

cust = server. get Cust oner s(sear chMask) ;

}

catch (RenoteException e) {
Systemout.printin("rm connection failure");

}

Vect or nodCust = new Vector();

for(int i=0; i< cust.size(); i++) {
Custoner ¢ = (Custoner)cust.elementAt (i);
nodCust . addEl enent (new nodel Cust ormer (¢, this));

return nodCust;

}

Summary of Object Relations

We started with a DataModel that fetched data external to out Customer object instead of having
the Customer be the only object that knows about its data. We considered having the order
information obtained at customer lookup time or having it obtained when the client requestsit. In
both cases, we found that client objects needed to know about server objects or vice-versa. TO
solve this, we created a doCustomer object which is a Factory for an actual Customer object or a
model Customer object which contains or encapsulates the basic Customer object. In both cases,
the barrier between client and server operationsis preserved.

Note on the Example Programs

Since many users will not find it convenient to try these examples on separate client and server
machines, we have modified the Database and RMIServer _Impl classes to operate locally
without using RMI if the database name is “local.” In that case, you include the RMIServer_Impl
classin the same directory asthe client classes and it is used directly.

