Parsing Nested XML
James W. Cooper

Many years ago, when | was young and charming, as some of you may know | practiced
baby bean farming. But right there in the small patch in my wide-open backyard | found
that the tops were being nibbled off every bean plant as soon as it came of age. | solved
the problem one day while hoeing between rows, when | heard a loud squeaking noise.
At first | thought I’d hit a child’ s toy, but upon deeper consideration, | discovered | was
hoeing into a nest of baby rabbits!

Well this nest wasn’t too hard to deal with, but much more recently | received some
patent documents in XML format, and needed to writ e alittle parser to pull out a few of
the more important fields. There was a single file with a whole series of concatenated
patents, having the form shown below.

<docunent form=' VIDI M >
<i tem name="' PN ><t ext >W00226988</t ext ></i tenr
<i tem name="' PUD ><t ext >2002- 04- 04</text></itenp
<i tem name=" TTL' ><t ext >DRUG METABCLI ZI NG ENZYMES</ t ext ></i t enp
<i tem name='1 NV' ><t ext >DUGGAN BRENDAN M BOROWSKY MARK L </text></itenp
<i tem nanme=' APD ><t ext >2001- 09- 28</text></itenm
<item nanme=' SPEC sign="true' seal ='true'>
<richtext>
<par >DRUG METABOLI ZI NG ENZYMES </ par >
</richtext>
</itenp
<item name=" ACLM sign="true' seal="true'>
<richtext>
<par>What is clainmed is: 1. </par>
</richtext>
</itenwr
<item nanme=' ABST' sign="true' seal ='"true'>
<ri chtext>
<par >The invention provi des human drug</ par>
</richtext>
</itenw
</ docunent >

While there are alarge number of other fields, the important oneswe want to extract are
PN- patent number

TTL- title

INV- inventors

APD- application date

SPEC- specifications

ACLM-claims

ABST- abstract

Parsing XML with a SAX Parser

Y ou will probably recall that there are two types of XML parsers. DOM parsers and SAX
parsers. A DOM parser parses the entire XML file at once and reads it into memory. A
SAX parser triggers calls to methods in an org.xml.sax.hel pers.DefaultHandler class each
time an XML tag isread. It is up to youto interpret the tags and to catch the text between
the tags and save the data or build a tree as needed. This latter SAX approach is the one
we'll use here, because it is scalable to multiple document files of any size.

In particular, you need to derive your own handler class from DefaultHandler to override
the following methods:

startElement, endElement —an XML element has started or ended
startDocument, endDocument — a document has started or ended.
characters — the characters between the tags are caught in this method.

The trouble with this summary of those methods is that it seems to imply that there can
only be one such set of methods and that you must find out which tag occurred and make
appropriate decisions within each method. This would lead to terribly convoluted code
and would be contrary to OO programming methods.

Instead, we'll build alittle class for each kind of tag and switch between them using a
factory.

The Base Tag parser class

We start by creating a base tag parsing class that has default implementations of the
startElement, end Element and characters mthods.
/ * %
* pase class for all tag parsing classes
*/
public class TagParser extends Defaul tHandl er {
protected StringBuffer buffer;//characters accunul ate here
protected String nane, value; //first attribute nanme and val ue
protected String tagNanme; /I nane of tag
protected Mediator ned; /I medi at or

/** Constructor for TagParser */
public TagParser(String tagName, Mediator nmed) {
super () ;
this.tagName = tagNane;
this.med = ned,
buffer = new StringBuffer(); //create a new buffer

/** all characters between tags accumul ate here

* may be called any nunber of tines between tags

* **/

public void characters(char[] ch, int start, int |ength)
t hrows SAXException {
/'l append all chars to buffer
buffer.append(ch, start, length);

/la tag has been started
public void startElement(//..

}

Reading Attributes

Now most of the XML tags in this example have one or more attributes that are
contained inside the tag. For example, the first attribute inside the item tag defines the

type of tag:

<item nane=' PN >

We take care of these attributess in the complete startElement method as shown below. In
this smple case, we save the name and value of the first attribute:

/la tag has been started
public void startEl ement (
String uri,
String | ocal Nane,
String gNane,
Attributes attrib)
t hrows SAXException {
/lcreate a new character buffer
buffer = new StringBuffer();

/lsee if there are any attributes

int length = attrib. getLength();

if (length > 0) { //if there are save the first one
name = attrib. get QNane(0);
value = attrib. getVal ue(0);

}

The Program’s Objective

Now, what we want to do is to write a program to pick out some of the more important
fields in each patent and then dump them to text files for analysis by other programs. We
will create a PatentDocument object with getters and setters for each of the fields we are
interested in ad a PatentWriter class to write out the text. The PatentDocument class has
the form

public class PatentDocunent {

private String title; // docunent title
private String id; /1 docunent ID

private String clains; //clains text

private String abst; /I abstract

private String spec; /I specification

private String path; /I path where we wite out the file
I]-=---

publ i ¢ Pat ent Document (String path) {
this.path = path;
title:id:C|airrB:abSt:SpeC:""

}
and has getters and setters for each of the private variables.

The redl issue here is how do we know which tag we are currently parsing, so we know
which field in the PatentDocument we want to update. We could use a bunch of if tests
and flags, but we will instead use a Factory, a Mediator and a Template Method pattern.

Nested XML

The whole secret to parsing nested XML is to create parse handlers for each tag and
switch them into place when that tag begins and restore the previous parse handler when
that tag ends. We use the Mediator class to handle the switching between these parse
handlers. The complete class diagram is shown in Figure 1. At the outset, it creates
instances of handlers for each of the tags we are interested in and stores them in a hash
table.

public Mediator(String inputFile, String path) {
parsers = new Hashtabl e();
stack = new Stack();
this.path = path;
parsers. put ("PN', new Pnunber Parser(this));
parsers. put ("TTL", new TitleParser(this));
parsers. put ("SPEC', new SpecParser(this));
parsers. put ("ACLM', new C ai nParser(this));
par sers. put ("ABST", new AbsParser(this));
par seHandl er = new Docunent Par ser (thi s);
try {
SAXPar ser Factory sFact =
SAXPar ser Fact ory. newl nst ance() ;
SAXPar ser sParser = sFact.newSAXParser ();
File fI = new File(inputFile);
sParser. parse(fl, this);
} catch (SAXException e) {
System out. println(e.get Message());
e.printStackTrace()
} catch (ParserConfigurati onException e) {
System out. println(e.get Message());
} catch (1 OException e) {
System out. println(e.get Message());
}

}
The Mediator itself becomes the SAX parser and passes on the calls to the current parse
handler, keeping previous ones on a stack.

/la tag has been started
public void startEl ement (
String uri,
String | ocal Nane,
String gName,
Attributes attrib)
t hrows SAXException {

String nane, value = "";
/I get the docunent parser if this is a docunent tag

i f (gNane. equal s("docunent")) {
/'l save ol d parser
st ack. push(parseHandl er);
par seHandl er = new Docunent Parser (this);
}
/'l choose one of the item parsers
/1if this is an itemtag
if (gNane.equals("itenl)) {
/I save ol d parser
st ack. push(parseHandl er) ;
int length = attrib. getLength();
/1get the first attribute
if (length > 0) {
name = attrib. get QNane(0);
value = attrib. getVal ue(0);
}
/1 get the new parse handl er
/1fromthe hash table
par seHandl er = get Parser(val ue);

}
/I pass call to new parse handl er
par seHandl er. startEl enment (uri, |ocal Name, gNane, attrib);

When atag ends, it calls the endElement method, which in turn calls the endElement
method of the current parseHandler:

/la tag has ended
public void endEl ement (String uri,
String | ocal Name, String gNane)
t hrows SAXException {
par seHandl er . endEl enent (uri, | ocal Nane, gNane);

}
Thisisthe critical piece because it is at that point that the data are copied in to the right
field of the document. For example for the PN (Patent Number) field, the PnumberParser
does the following:

public void endEl enment(String uri,
String | ocal Name, String gNane)
t hrows SAXException {
i f (gName. equal s(tagNanme)){
copyBuffer();
med. endEl enent (); //pops handler off stack

protected void copyBuffer() {
med. get Docunent () .setld(buffer.toString().trim());
}

Then, back in the Mediator, the previous parseHandler is restored:

public void endEl enent () {
par seHandl er = (TagParser) stack. pop();
}

Writing the ParseHandlers

Each parseHandler has a startElement and endElement method and a copyBuffer method
that copies the data to the right place in the PatentDocument object. We start by creating
an abstract class with an abstract copyBuffer method, which forces al the derived classes
to implement one specifically:

public abstract class |ItenParser extends TagParser {

}

public ItenParser(Mediator nmed) {
super("item', med);
}

/la tag has started
public void startEl ement (
String uri,
String | ocal Nane,
String gNane,
Attributes attrib)
t hrows SAXException {
super.startEl ement(uri, |ocal Nane,
gNane, attrib);
}
/la tag has ended
public void endEl enent(String uri,
String | ocal Name, String gName)
t hrows SAXException {
i f (gName. equal s(tagNane)){
copyBuffer();
med. endEl enent (); //pops handl er off stack
}
}
/'l copy the results sonmewhere
protected abstract void copyBuffer()

Thisis actually most of the code. The derived handlers really just have to implement the
copyBuffer method to put the data accumulated by the characters() method somewhere.
Here is the complete parseHandler for patent numbers

public class PnunberParser extends |tenParser {

publ i ¢ Pnunber Parser (Medi at or ned) {
super (nmed) ;
}

protected void copyBuffer() {
med. get Docunent ().setld(buffer.toString().trim());
}

ltemParser

(fram defeu] TagParser
ffrom defaul
ltemP D TagP DocumentParser
HtemParser +TagParser
< f—— ffrom defaul]
#oopyBuffer +characters
+endElement +startElement
+startElement ; 7
/
-parseHangler; 0.1
A AR parseta ’
sCrestess \ ! £
i /
[i
Vb ‘
Y f
i B
] f
| I
[.
MrdPasar ClaimParser | NullParser | * PnumberParser SeePErEs s TitleParser
(from defau {from defaul] {from defaul] {from defaull] lEwEsey) | ffrom defzut]
i { K
e
~ K I v E
- . \\ i ! /
- S i S -
= 5 \ i/ ’
PatentDocument S n ,-'f //
[from default] ™ -~ N 5 s s
= . ; s
o
+PatentDocument “ \\ //
S
+getibstract . Y , <
+getClaims - ;
- #
+getld S N . , P
+getSpec ~. \\ \\1\« ﬁ@éj:iﬁig(egj R
+getTitle G«Eﬁa — SN PR i L
+setAbstract i T -~ ‘*;: Mediator - m i
. - LIEESs!
+setClaims b __zuge;‘ rom defeuly | S atentWriter
+setld hy 0.1 (from defautt
—parsers |————————
+setSpec _path med
+setTitle etack
+writeFile

Figure1l - The classdiagram for the nexted XML parser

Leaving the Nest

In summary, we' ve written a nested XML parser using very little code. The Mediator
decides where to send the start, end, and characters method calls, and the parseHandlers
decide where to store the characters that have accumulated. There are some more tricks
we could learn some time for handling a whole bunch of disparate attributes, and well
tackle them in some future flight.

