
Parsing Nested XML
James W. Cooper

Many years ago, when I was young and charming, as some of you may know I practiced
baby bean farming. But right there in the small patch in my wide-open backyard I found
that the tops were being nibbled off every bean plant as soon as it came of age. I solved
the problem one day while hoeing between rows, when I heard a loud squeaking noise.
At first I thought I’d hit a child’s toy, but upon deeper consideration, I discovered I was
hoeing into a nest of baby rabbits!

Well this nest wasn’t too hard to deal with, but much more recently I received some
patent documents in XML format, and needed to writ e a little parser to pull out a few of
the more important fields. There was a single file with a whole series of concatenated
patents, having the form shown below.
<document form='VTDIM'>
<item name='PN'><text>WO0226988</text></item>
<item name='PUD'><text>2002-04-04</text></item>
<item name='TTL'><text>DRUG METABOLIZING ENZYMES</text></item>
<item name='INV'><text>DUGGAN BRENDAN M; BOROWSKY MARK L </text></item>
<item name='APD'><text>2001-09-28</text></item>
<item name='SPEC' sign='true' seal='true'>

<richtext>
<par>DRUG METABOLIZING ENZYMES </par>

</richtext>
</item>
<item name='ACLM' sign='true' seal='true'>

<richtext>
<par>What is claimed is: 1. </par>

 </richtext>
</item>
<item name='ABST' sign='true' seal='true'>

<richtext>
<par>The invention provides human drug</par>
</richtext>

</item>
</document>

While there are a large number of other fields, the important ones we want to extract are

PN- patent number

TTL- title

INV- inventors

APD- application date

SPEC- specifications

ACLM-claims

ABST- abstract

Parsing XML with a SAX Parser
You will probably recall that there are two types of XML parsers: DOM parsers and SAX
parsers. A DOM parser parses the entire XML file at once and reads it into memory. A
SAX parser triggers calls to methods in an org.xml.sax.helpers.DefaultHandler class each
time an XML tag is read. It is up to you to interpret the tags and to catch the text between
the tags and save the data or build a tree as needed. This latter SAX approach is the one
we’ll use here, because it is scalable to multiple document files of any size.

In particular, you need to derive your own handler class from DefaultHandler to override
the following methods:

startElement, endElement – an XML element has started or ended

startDocument, endDocument – a document has started or ended.

characters – the characters between the tags are caught in this method.

The trouble with this summary of those methods is that it seems to imply that there can
only be one such set of methods and that you must find out which tag occurred and make
appropriate decisions within each method. This would lead to terribly convoluted code
and would be contrary to OO programming methods.

Instead, we’ll build a little class for each kind of tag and switch between them using a
factory.

The Base Tag parser class
We start by creating a base tag parsing class that has default implementations of the
startElement, endElement and characters mthods.
/**
 * base class for all tag parsing classes
 */
public class TagParser extends DefaultHandler {
 protected StringBuffer buffer;//characters accumulate here
 protected String name, value; //first attribute name and value
 protected String tagName; //name of tag
 protected Mediator med; //mediator

 /** Constructor for TagParser */
 public TagParser(String tagName, Mediator med) {
 super();
 this.tagName = tagName;
 this.med = med;
 buffer = new StringBuffer(); //create a new buffer
 }
 //------
 /** all characters between tags accumulate here
 * may be called any number of times between tags.
 * **/
 public void characters(char[] ch, int start, int length)
 throws SAXException {

//append all chars to buffer
 buffer.append(ch, start, length);
 }
 //------

 //a tag has been started
 public void startElement(//.. .

 }
}

Reading Attributes
Now most of the XML tags in this example have one or more attributes that are
contained inside the tag. For example, the first attribute inside the item tag defines the
type of tag:
<item name='PN'>

We take care of these attributess in the complete startElement method as shown below. In
this simple case, we save the name and value of the first attribute:
//a tag has been started
 public void startElement(
 String uri,
 String localName,
 String qName,
 Attributes attrib)
 throws SAXException {
 //create a new character buffer
 buffer = new StringBuffer();

 //see if there are any attributes
 int length = attrib.getLength();
 if (length > 0) { //if there are save the first one
 name = attrib.getQName(0);
 value = attrib.getValue(0);
 }
}

The Program’s Objective
Now, what we want to do is to write a program to pick out some of the more important
fields in each patent and then dump them to text files for analysis by other programs. We
will create a PatentDocument object with getters and setters for each of the fields we are
interested in ad a PatentWriter class to write out the text. The PatentDocument class has
the form
public class PatentDocument {
 private String title; //document title
 private String id; //document ID

 private String claims; //claims text
 private String abst; //abstract
 private String spec; //specification
 private String path; //path where we write out the file
 //-----
 public PatentDocument(String path) {
 this.path = path;
 title = id = claims = abst = spec = "";

 }
and has getters and setters for each of the private variables.

The real issue here is how do we know which tag we are currently parsing, so we know
which field in the PatentDocument we want to update. We could use a bunch of if tests
and flags, but we will instead use a Factory, a Mediator and a Template Method pattern.

Nested XML
The whole secret to parsing nested XML is to create parse handlers for each tag and
switch them into place when that tag begins and restore the previous parse handler when
that tag ends. We use the Mediator class to handle the switching between these parse
handlers. The complete class diagram is shown in Figure 1. At the outset, it creates
instances of handlers for each of the tags we are interested in and stores them in a hash
table.
public Mediator(String inputFile, String path) {
 parsers = new Hashtable();
 stack = new Stack();
 this.path = path;
 parsers.put("PN", new PnumberParser(this));
 parsers.put("TTL", new TitleParser(this));
 parsers.put("SPEC", new SpecParser(this));
 parsers.put("ACLM", new ClaimParser(this));
 parsers.put("ABST", new AbsParser(this));
 parseHandler = new DocumentParser(this);
 try {
 SAXParserFactory sFact =
SAXParserFactory.newInstance();
 SAXParser sParser = sFact.newSAXParser();
 File fl = new File(inputFile);
 sParser.parse(fl, this);
 } catch (SAXException e) {
 System.out.println(e.getMessage());
 e.printStackTrace() ;
 } catch (ParserConfigurationException e) {
 System.out.println(e.getMessage());
 } catch (IOException e) {
 System.out.println(e.getMessage());
 }
 }
The Mediator itself becomes the SAX parser and passes on the calls to the current parse
handler, keeping previous ones on a stack.
//a tag has been started
 public void startElement(
 String uri,
 String localName,
 String qName,
 Attributes attrib)
 throws SAXException {

 String name, value = "";
 //get the document parser if this is a document tag

 if (qName.equals("document")) {
 //save old parser
 stack.push(parseHandler);
 parseHandler = new DocumentParser(this);
 }
 //choose one of the item parsers
 //if this is an item tag
 if (qName.equals("item")) {
 //save old parser
 stack.push(parseHandler);
 int length = attrib.getLength();

//get the first attribute
 if (length > 0) {
 name = attrib.getQName(0);
 value = attrib.getValue(0);
 }

//get the new parse handler
//from the hash table

 parseHandler = getParser(value);
 }
 //pass call to new parse handler
 parseHandler.startElement(uri, localName, qName, attrib);
 }

When a tag ends, it calls the endElement method, which in turn calls the endElement
method of the current parseHand ler:
//a tag has ended
 public void endElement(String uri,

String localName, String qName)
 throws SAXException {
 parseHandler.endElement(uri, localName, qName);
 }
This is the critical piece because it is at that point that the data are copied in to the right
field of the document. For example for the PN (Patent Number) field, the PnumberParser
does the following:
public void endElement(String uri,

String localName, String qName)
 throws SAXException {
 if(qName.equals(tagName)){
 copyBuffer();
 med.endElement(); //pops handler off stack
 }
}
//-----
protected void copyBuffer() {
 med.getDocument().setId(buffer.toString().trim());
}

Then, back in the Mediator, the previous parseHandler is restored:
public void endElement() {
 parseHandler = (TagParser) stack.pop();
}

Writing the ParseHandlers
Each parseHandler has a startElement and endElement method and a copyBuffer method
that copies the data to the right place in the PatentDocument object. We start by creating
an abstract class with an abstract copyBuffer method, which forces all the derived classes
to implement one specifically:
public abstract class ItemParser extends TagParser {
 public ItemParser(Mediator med) {
 super("item", med);
 }
 //a tag has started
 public void startElement(
 String uri,
 String localName,
 String qName,
 Attributes attrib)
 throws SAXException {
 super.startElement(uri, localName,

qName, attrib);
 }
 //a tag has ended
 public void endElement(String uri,

String localName, String qName)
 throws SAXException {
 if(qName.equals(tagName)){
 copyBuffer();
 med.endElement(); //pops handler off stack
 }
 }
 //copy the results somewhere
 protected abstract void copyBuffer() ;
}

This is actually most of the code. The derived handlers really just have to implement the
copyBuffer method to put the data accumulated by the characters() method somewhere.
Here is the complete parseHandler for patent numbers
public class PnumberParser extends ItemParser {
 public PnumberParser(Mediator med) {
 super(med);
 }

 protected void copyBuffer() {
 med.getDocument().setId(buffer.toString().trim());
 }
}

Figure 1 – The class diagram for the nexted XML parser

Leaving the Nest
In summary, we’ve written a nested XML parser using very little code. The Mediator
decides where to send the start, end, and characters method calls, and the parseHandlers
decide where to store the characters that have accumulated. There are some more tricks
we could learn some time for handling a whole bunch of disparate attributes, and well
tackle them in some future flight.

