Objective Memories
James W. Cooper

Sometimes you can get so focused on one task, you miss everything e se that isgoing on
around you. Y ou might be listening to some terrific music, or reading a greet novel and
forget to feed the dog until he starts dobbering in your lgp. Y ou might be trying to get a
nice little piece of OO code done and completely overlook the opportunity to use adesign
pattern to do it better. Y ou might aso be trying to use anice design pattern and in the
process completely forget that OO principles till ought to gpply.

The Memento Pattern

This happened to me when | was writing a little program that used the Memento pattern
pretty effectively. Let me show you what | mean. The purpose of the Memento pattern is
to use an externa object to save and restore the state of another object. Once place where
this can come in handy isin saving the Sate of drawings you might want to undo later.

Now, objects normaly shouldn’t expose much of their internd state using public
methods, but you woud gtill like to be able to save the entire state of an object because
you might need to restoreit later. In some cases, you can obtain enough information from
the public interfaces (such as the drawing position of graphicd objects) to save and
restore that data. In other cases, you might need to save the color, shading, angle and
connection relationship to other graphical objects, and thisinformation is not readily
avalable.

Now if your object has public methods you can use to get at the vaues representing its
interndl gete, it isnot difficult to save them in some externd object. However, making
these data public makes the entire systemn vulnerable to change by externa program code,
when we usuadly expect dataingde an object to be private and encapsulated from the
outside world.

The Memento pattern attempts to solve this problem by having privileged accessto the
state of the object you want to save. Other objects have only a more restricted access to
the object, thus preserving their encapsulation. This pattern defines three roles for
objects:

1. TheOriginator isthe object whose State we want to save.
2. TheMemento is another object that saves the state of the Originator.

3. The Caretaker manages the timing of the saving of the Sate, saves the Memento and,
if needed, uses the Memento to restore the state of the Originator.

A Privileged Life

Now the term “privileged access’ sounds somewhat ditist and allittle mystical, especidly
in an egditarian language like Java. Languages like C++ have afriend modifier that lets
one class gain access to private variables of another class, and C# has akind of friend
systlem too, dthough it is much more limited in its va ue.

In Java, the closest we can come is to use the package protected variable visibility.
Normally, we declare dl of the variables insde a class as private and only get a them
using “get” and “set” accessor methods. Alternativiey, we could declare them public and
anyone can have a them anyway they like. The third dternative is not to declare these
variables as ether public or private.

Inthislast casg, it turns out that any class in that package can access those variables. This
can be kind of dangerous, an that is why we obsessvely mark dl of our classvariables as
“private” However, this could be one way to save and restore an object’” state without a

lot of excess exposure.

Let’s now suppose that we have a primitive graphics program that we can use to draw
rectangles and move them around on the screen. WE have atoolbar where we can select a
button to add a rectangle, and a button to undo the last action. If we click ingde agivene
rectangle, it draws handles and we can drag it around. Y ou can see the program in action
inFigure 1.

=T

L

Figure 1 — The rectangle drawing program.

The Memento

Evefry time we drag a rectangle around, we want to save its previous position so we cab
undo the latest motion. That is where we use a Memento to save the save of the visud
rectangle object. Hereisthat visud class.

public class visRectangle {
int x, y, w h; /| package protected
private Rectangle rect;
private bool ean sel ect ed;

public visRectangle(int xpt, int ypt) {
X = Xpt; y = ypt;
w = 40; h = 30;
saveAsRect () ;

public void setSel ected(bool ean b) {
sel ected = b;

private void saveAsRect () {
rect = new Rectangle(x-w 2, y-h/2, w, h);

public void draw(Graphics g) {
g.drawRect (x, y, w, h);
if (selected) {
g.fill Rect (x+wW 2, y-2, 4, 4);
g.fill Rect(x-2, y+h/2, 4, 4);
g.fill Rect (x+w 2, y+h-2, 4, 4);
g.fill Rect (x+w 2, y+h/2, 4, 4);

public bool ean contains(int x, int y) {
return rect.contains(x, y);

public void nmove(int xpt, int ypt) {
X = xpt; y = ypt;
saveAsRect () ;
} }
Note that the variables x, y, w, and h are not declared as private and are therefore package
protected. Now, you can save the State of that rectangle, and a reference to the rectangle

itself usng a Memento class.

public class Menento {
vi sRectangl e rect;
/**saved fields- remenber internal fields
of the specified visual rectangle
*/

private int x, y, w, h;

public Menento(visRectangle r) {
rect =r;
X = rect.x; vy
w=rect.w, h

rect.y;
rect. h;

public void restore() {
/lrestore the internal state of
/Ithe specified rectangle
rect.x = x; rect.y Y;
rect.h = h; rect.w=w,

}
}
The congtructor saves a reference to the visRectangle object and then saves the current
coordinates. The restore method returns these saved vaues to the saved visRectangle
object.

Taking Care of the Objects

There are two more classes we use in this program. The Mediator smply interprets

button clicks and tells the Caretaker to keep track of what has transpired. We ve seen lots
of Mediators before so we won't work trough that again here. The Caretaker class kegps
track of the undo list and creates Memento objects as needed.

If we add a visRectangle to the drawing list, we smply cal the following Careteke
method to add it to the undo list as well:

public void addEl enent (Cbj ect obj) {
undolLi st. addEl enent (obj);
}

Likewisg, if the rectangle gets moved, we cal this same method with a Memento object.
Hereisthe Mediator method that adds these Mementos:

public void remenberPosition() {
if (rectSelected) {
Memento m =
new Menment o(sel ect edRect angl e) ;
car et aker. addEl enent (m) ;
repaint();
}
}
It is pretty obvious that we want to add Mementos when we want to save arectangle

motion, but what do we add when we just add a new rectangle to the drawing list? Well
in this program, we just add an Integer representing the number of that drawing in the
drawing list:

I nt eger count =

new | nteger (draw ngs. size());
/] Save previous drawing list size
car et aker . addEl enment (count);

How to Do Undo?

So now we have an undo ligt vector that contains amixture of Integer objects and
Memento objects. How do we do undo? We could cal an undo method in the Caretaker
class and have it tease this gpart:

public void undo() {
i f (undoList.size() > 0) {

/1get last element in undo I|ist

Obj ect obj = undoList.|astEl enment();

undoLi st . renmoveEl ement (obj) ; //and renove it

//renpove | nteger or Memento

if (obj instanceof Integer)
renmove((1 nteger)obj);

el se
renmove((Mement o) obj) ;

}
}
where our two polymorphic remove methods elther restore the Memento contents or just

shorten the drawing list:

/[l renpve the drawing fromthe |i st
private void renove(lnteger obj) {
bj ect drawCbj = draw ngs. | astEl enent();
dr awi ngs. renoveEl ement (drawCbj) ;

//restore the Menento contents
private void renove(Menmento obj) {
Memento m = (Menent o) obj ;
mrestore(); /land restore the old position
}
And thiswill dl work pretty well. Undo undoes the right thing each time. But then, |
thought, “Oh horror!” What kind of object oriented programming is that? Y ou should
never have to check the type of an object and then call a particular method. The method
should be polymorphic and each one should work only on the correct type. How do we
do this, when we don’'t know the type of object in aVecdtor, since they are dl returned as
type Object?

Will, we need to do a bit of rewriting. How about making everything a Memento, and
making it amore generd class?

More and Better Mementos

What we do is redefine the Memento to be any class that has a restore method. In other
words, Memento becomes just an interface:

public interface Menento {
public void restore()
}

Then, we redefine the class that remembers rectangle positions to be cdled
RectangleMemento:

public class Rectangl eMenento inplenments Menento {
vi sRectangl e rect;
private int x, y, w, h;
publ i ¢ Rectangl eMenent o(vi sRectangle r) {
rect =r;
X =rect.x; 'y
w=rect.w, h

rect.y;
rect. h;

public void restore() {
//restore the internal state of
//the specified rectangle
rect.x = x; rect.y =y;
rect.h = h; rect.w=w,

But what do we do about that Integer object that just says remove this one? There are
probably anumber of smilar gpproaches you could think of. One that occurred to me that
required only very smal code changes, is to create an IntegerMemento classwhich is
derived from Integer:

public class IntegerMenento inplenments Menento {
private Vector draw ngs;
public Integer Menment o(Vector drws) {
drawi ngs = drws;

public void restore (){
dr awi ngs. renoveEl enent At (drawi ngs.size () -1);
}

}

All thisclassredly doesis save the drawing lis. It' s restore method doesn’t even need to
know the drawing number, because we will dways be remove the last onein the list. That
is exactly what the above restore method does.

Now, how does our Caretaker’ s undo method work? We ssimplify it greatly because dl of
the objectsin the undo list are Memento objects. The undo is now
public void undo() {
i f (undoList.size() > 0) {
/1get last element in undo I|ist
Menento mem = (Menent o) undoLi st. | ast El enent () ;

undolLi st . renoveEl ement (nen) ; /land renove it
memrestore ();

}
Wejust call restore on whatever object is on the list. Thisis much more acceptable from

an OO basis, and is aso much more extensible. If we add circles, fills and colors, we can
make al of them Memento objects as well and cdl their restore methods.

So you see, | did redly improve and smplify this after looking in horror at my lgpse.
Now | have to go feed the dog.

