DON'T OBJECT TO OBJECTS

James W. Cooper

Last month | was writing asimple Visua Basic program with 3 radio buttons and alist box. The
point of the program was to display different thingsin the list box depending on which button
was selected, and to print out that list when a Print button was selected. Thisis about as easy to
doinVB asitisin Java, but | started thinking about how much better you could do thisin Java,
and realized that areally good example of that program exemplified a whole bunch of OO
programming concepts.

Let’'s start by defining a smple problem. We have alist of kids, both boys and girls, and we'd
like the option of displaying the girls, the boys, or both. A simple GUI for this problem is shown

in Figure 1.

[Kid List

rSelect sex——————lKristen Frost
Kimberly Watcke

e : Jachn Carey

& femals Megan Crapster

CWale kaithvn Arment
Jackie Rogers

" Both Erin McLaughlin
Ermily Ferrier
Aurora Lee
kate Isselee

Figure 1 — The Swing window showing the results of clickingon the Female radio button.

A Simple Implementation

Let’swrite this program in the simplest way possible, the way it might occur to you when you
start out. We'll use the Swing classes, because they look alot nicer on the screen, but we'll take
some shortcuts. We have previously described a ssmple wrapper that makes the JList easier to
use, inaclass| called JawtList, because it has similar properties to the original awt List object.
We'll use that for our list box. Then, we'll put the three JRadioButtons in a BoxLayout on the
left side as shown above, and surround it with a TitledBorder. Thisisdonein Listing 1, and
represents afairly straightforward way of constructing a Swing window.
public class ShowLi st extends JxFrane inplenents ActionListener {

private JRadi oButton fermal e, male, both;

private Jawt Li st ki dLi st;

private Swi mer sw;
private Vector sw nmers;

public ShowList() {

super("Kid List");

JPanel jp = new JPanel (); /] create interior panel
j p- set Layout (new Gri dLayout (1, 2));

get Cont ent Pane() . add(j p) ;

JPanel | p = new JPanel ();

| p. set Layout (new BoxLayout (| p, BoxLayout.Y_AXIS));

jp-add(lp);

/lcreate titled border around radi o button panel

Border bd = BorderFactory. creat eBevel Border (Bevel Border.LONERED);
Titl edBorder tl = BorderFactory.createTitledBorder (bd, "Select sex");
| p. setBorder (tl);

// put bevel border around |i st

ki dLi st = new Jaw Li st (20);

ki dLi st. set Border (BorderFactory.createBevel Border (Bevel Border.LONERED)) ;
j p- add(ki dLi st);

//add in the radio buttons

femal e = new JRadi oButton("Fenal e");
mal e = new JRadi oButton(" Ml e");
both = new JRadi oButton("Both");

/' keep them all together

ButtonGroup grp = new ButtonG oup();
grp. add(fenual e);

grp. add(mal e) ;

grp. add(bot h);

/I make sure they all receive clicks
f emal e. addActi onLi stener (this);

mal e. addActi onLi stener (this);

bot h. addAct i onLi stener (this);

space the buttons out

.add(Box. createVertical Strut (30));
.add(fenual e);

.add(Box. createVertical Strut (5));
.add(mal e);

.add(Box. createVertical Strut (5));

/
p
p
p
p
p
p. add(bot h) ;

Listing 1 — Setting up the Swing

Note that the base class is derived from JxFrame, a class | described previously which includes
automatic setting of the look and feel, and setting the window to exit when the Close box is
clicked. This class implements the ActionListener interface, and each of the radio buttons has
been told that this frame is the listener for their actions. | aso had some code form a previous
example around which would read in alist of kids from afile along with their sexes along with
other information we don’'t use here. We bury thisin a Swimmer class which parses each line of

Now, the simplest way to write this program is to carry out the loading of thelist in the
actionPerfomed method:

public void actionPerforned(ActionEvent evt) {

bj ect obj = evt.getSource ();
if(obj == female)

| oadFemral es() ;
if(obj == nale)

| oadMal es() ;
i f (obj == both)
| oadBot h() ;

}
Then, we have three code |oading methods for females, males and both. They look like this:

private void | oadFeral es() {

ki dLi st.clear();

Enunerati on enum = sw nmers. el enment s() ;

whi | e(enum hashMor eEl ements ()) {
Swi nmer sw = (Swi nmer) enum next El ement () ;
if (swisFemale ()) {

ki dLi st.add (sw. getNane ());

}

}
}
It has often been noted that for every problem, there is a solution that is neat, Ssmple, and wrong.
Thisis such acase. Even though the code works fine in this example, it is about as far from
being object oriented as you can imagine. Whenever you see a set of if statements deciding

which thing to do next, as we have in the actionPerformed method above, you should
immediately suspect that you have not written the best possible OO program.

Taking Command

Let’s see what we can do to make this alittle less tacky. Suppose we derive 3 button subclasses
from JRadioButton and have each implement the Command interface. Recall that the Command
interface just says that each class will have an Execute method:

public interface Conmmand {
public void Execute();
}

So, we'll make a FemaleButton, a MaleButton and a BothButton, each of which have an
Execute method that loads the list with the right data. Here' s the female version:

public class Fenml eButton extends JRadi oButton inplenments Command {
Vect or sw mmers;
Jawt Li st ki dLi st ;

public Fenal eButton(String title, Vector sw, JawtList klist) {
super(title);
SW Mmers = sw,
ki dLi st = klist;

}
public void Execute() {
Enunerati on enum = sw nmers. el enment s() ;
ki dList.clear();
whi | e(enum hashMor eEl ements ()) {
Swi nmer sw = (Swi nmer) enum next El ement () ;
if (swisFemale ()) {
ki dLi st.add (sw. getNane ());
}

Note that we pass in the instance of the kidList list box and of the Vector of kids and add the
right onesto the list box when Execute is called. This approach greatly smplifies the
actionPerfomed method to just:

public void actionPerforned(ActionEvent evt) {
Command cnd = (Conmand) evt. get Source ();
cmd. Execute ();

}
Now there is no testing of buttons, since each one knows the right thing to do in its Execute

method.

Making Better Choice

But we can still do better than this. We have more or less the same code in the 3 button classes,
each of which loads the list with something based on a decision that the button makes. We redly
ought to separate the interface from the data better than that. Buttons themsel ves should not be
making decisions. They ought only to implement the visual logic needed to display the results of
decisions made el sewhere.

So, we should consider replacing that vector of kids names with classes that make the decisions.
Let's start with a Kids class which holds the data and |oads the list:

public class Kids {
protected Vector sw mers;

//set up the vector
public Kids(){
swi nmers = new Vector();

}

//add a kid to the Iist

public void add(String line) {
Swi nmer sw = new Swi nmer (| i ne);
swi nmer s. add(sw) ;

//return the vector
public Vector getKidList() {
return swi nmers;

/1 get an enuneration of the kids

public Enuneration getKids() {
return swimmers. el ements();

}

}

This class creates a Vector of Swimmers and returns an enumeration of them as needed. The
enumeration is returnsis of the whole list of kids. However, we can derive classes from Kids that
return enumerations of males or females by smply extending the getKids method. So we create a
FemaleKids class just like the one above, except that the getKids methods returns only girls:

public class Fenmul eKi ds extends Kids {
//set up vector
publ i c Fenal eKi ds(Ki ds kds) {
swi nmers = kds. get Ki dLi st ();

/lreturn fenale sonly
public Enuneration getKids() {

Vector kds = new Vector();
Enunerati on enum = swi nmers. el enment s() ;
whi | e(enum hashMor eEl ements ()) {
Swi nmer sw = (Swi nmer) enum next El ement () ;
if(swisFemale ())
kds. add (sw);

return kds. el enents();

}
}

Thisisthe whole class: the remaining methods are in the base class. Smilarly, we create a
MaleKids class which differs only in the line

if(! swisFemale ())

The buttons themselves then instantiate an instance of the correct class, with each using only that
class. This gets away from having to have a getAll, a getFemales and a getMaes method, when
they areredlly al the same. Here' s the MaleButton class as we recast it to use the MaleKids
class.

public class Ml eButton extends JRadi oButton inplenents Conmand {
Mal eKi ds kds;
Jawt Li st ki dLi st ;

// constructor

public Mal eButton(String title, Kids sw, JawtList klist) {
super(title);
kds = new Mal eKi ds(sw) ;
ki dLi st = klist;

/1 The getKids nmethod is the sane in all three classes
public void Execute() {
Enunerati on enum = kds. getKi ds();
ki dList.clear();
whi | e(enum hashMor eEl ements ()) {
Swi nmer sw = (Swi nmer) enum next El ement () ;
ki dLi st.add (sw. getNane ());

}

Now, not only have we gotten rid of that awkward set of if statements in the actionPerformed
routine, we' ve replaced three methods in one awkward class with a single method in 3 smpler
classes. Thisisamuch simpler and even more object-oriented approach. Having three button
classes like this, each of which instantiates a different instance of the Kids class is an example of
the Factory Method pattern, and having the 2 classes derived from the base Kids classis an
example of the Template pattern.

Mediating the Final Difference

But, we're still not done. Our 3 button classes all have to know about the kidList list box and add
the names to it in the Execute method. This means that each button object has to know the details
of the kidList object, and thisis aso poor design. It makes the program hard to change and
maintain. Suppose we wanted to replace that list with atable or atreelist. We'd have to change 3
classes. Clearly that is aterrible idea, especidly if the number of buttons grows.

But if the Execute method has to be in the button class, and the list has to be elsewhere, how do
we resolve this? We resolve it be creating another class called a Mediator. This Mediator is the
only class that knows about the details of the kidList. And all other classes only have to know
about the Mediator. Here' s the entire class:

//this nediator is used to get the enumeration
//and load the Iist
public class Mediator {

Jawt Li st ki dLi st ;

//save the list in the constructor
public Mediator(Jawt List klist) {
ki dLi st = klist;

//1oad the list fromthe enuneration
public void | oadLi st (Enuneration enunm {
ki dLi st.clear();
whi | e(enum hashMor eEl ements ()) {
Swi nmer sw = (Swi nmer) enum next El ement () ;
ki dLi st.add (sw. getNane ());

}
}

The way we use this, is that we create an instance of the kidList class and then create a Mediator:

ki dLi st = new Jaw Li st (20);
ki dLi st. set Border (BorderFactory.createBevel Border (Bevel Border. LONERED)) ;

| oadSwi mers(); /lread in file
med = new Medi at or (ki dLi st); /Il create Mediator

Then, we pass an instance of the Mediator to each button when we create it

femal e = new Fenul eButton("Fenal e", kds, ned);
mal e = new Mal eButton("Mal e", kds, ned);
both = new Bot hButton("Both", kds, ned);

and each Execute method just tells the Mediator what to do.

public class Fenml eButton extends JRadi oButton inplenments Command {
Ki ds kds;
Medi at or ned;

public Fenmal eButton(String title, Kids sw, Mediator md) {
super(title);
kds SW,
med nd;

}

public void Execute() {
Enunerati on enum = kds. get Fermal es ();
nmed. | oadLi st (enum;

}

And, this brings us to the end of our design exercise. We' ve taken a pretty poor first program
example and made it more object oriented and more extensible, and made it smpler as well.

The UML Diagram

Figure 2 shows the UML diagram for this program.

Kids
from default
FemaleKids [_m Ed
fomdelaul) |- — =7 +Kids
JxFrame { ; RUSESH, Lol
(o defaut +FE{&.""E'|BK":'S 0.1 getkidList
SRS K= +getkids
«USES:::\ k= ‘|IZI.
«USES»II
'
Swimmer ; 'i
ffrom defauti MedChoice 5 :
{local to package} [from dlefautt] |
+Swimmer o +MedChoice I
+getAge T +actionPerformed !.
+getClub -loadSwirnmers 1.1 FemaleButton ———_ BothButton
+gethlame +main sle ffvom defaut 0
e +FemaleButton +BothButtan
+isFemale = oy
! 5
! Y
!
0.1 | kiclList x\ I|
JawtList T~
i
(from default) .:I &
B
-listContents !
-listWindow | susess I
FiolList = ! b

i3
=

™~ Mediator

[from defaul)
+Mediator
+loadList

sUsEsy

'f!;" II\-I\TKL,ISES»
. \

T 01
-male

d e
KUSBS»ES(' SUSESs

w0 il [t med

MaleKids
from default]

+Malekids

+getkids

kids 1‘0..1

MaleButton
[from defaul)

+MaleButton

+Execute
I

|
= !

ngﬂ v

sinterfaces
Command

[from defaul)
+Execute

Figure 2 — The UML diagram for the final mediated version of the 3 button choice and display

program.

While this diagram seems a bit complex at firgt, it is easy to see that there are 3 classes called
Kids, FemaleKids and MaleKids and corresponding button classes FemaleButton, BothButton
and MaleButton, all of which implement the Command interface. It isthis parallel set of classes
that gives us the Factory Method pattern and makes the final program so simple to read and

change.

Concluding Patterns

In this brief article, we' ve taken asimple idea and turned it into a program that uses a whole
bunch of design patterns. We' ve seen examples of the Command, the Template, the Factory
Method and the Mediator. In addition, our JawtList is an example of the Adapter pattern and all
Swing lists are themselves examples of the Observer pattern. So you see that Design patterns do

not complicate your life, but in fact make the programs simpler and easier to maintain. | put al
of the 4 versions in the example code, so you can see just how they differ and how they become
smpler.

