Java Compared With .NET
James W. Cooper

Y ou probably have heard more than enough about Microsoft’'s .NET strategy already, and
may or may not be a heavy user of this new system. If you are, you may know that the
design of Java certainly influenced the language structure of .NET in significant ways. In
fact, | have discovered that | can write almost exactly the same code (and | mean this
literally) in both systems.

Let’s be clear herethat the entire .NET strategy is still unfolding and even that part that
has been completely explained is far more than language design. However, by
understanding this language design, you'll gain some valuable insights into where .NET
can go.

The two most important languages in the .NET system are C# (pronounced “ C-sharp”)
and VB.NET, the later implementation of Microsoft’s wildly successful Visual Basic
language. While you may think you can dismiss VB out of hand, you do need to realize
that it is probably the most widely used computer language in the world (and this means
including all platforms). The thing that is unique about the .NET system is that C# and
this latest version of VB are just two sides of the same coin. They use the same basic
system libraries and compile to the same intermediate code. This intermediate code is
then interpreted at execution time much like the Java byte-codes are interpreted by the
Java virtual machine. Within this system, both C# and VB.Net now provide garbage
collection much like Java does. While it is apparently possible for this intermediate
language code to be compiled at execution time into binary Intel code, thisis not the
current default model.

It seems to me that this approach can be very valuable to Microsoft in moving to 64-hit
Intel computing. They do not need to provide specially conpiled versions of code written
for .NET. They only need to provide a run-time system that is optimized for that
platform, and all .NET code will run unchanged. Of course, this also provides a
convenient pathway to other completely different platforms such as Linux and the
Macintosh, should they wish to pursue competing in that environment.

The greatest strength (and weakness) of C# and VB.NET is the very easy to use visua
builder environment that alows you to make nice-looking Windows applicationsin just a
few clicks and drags. All the code to support these windows components is generated
automatically for you. And the entire layout is handled under the covers. Even today,
there is no Java development environment that does this as well. Of course, the weakness
of this system remains that it is Windows-only and this can be a drawback for cross-
platform development projects.

The code that generates the windows is now all within your classes and you can change it
or generate windows yourself using the same kind of coding the designer GUI produces.
VB and C# do not have layout managers at thistime, so all of the layouts are in absolute
terms. We can of course argue endlessly as to which way is “better,” but within just the
Windows environment, fixed layout is generally accepted as adequate.

What is C# Like?

The new C# language has the same overall syntax as C, C++ and Java: it uses braces and
has the exact same syntax for all the fundamental language elements. C# is considerably
more like Java than C++, in that it has classes with methods and constructors and
specifically allows only single inheritance. Like Java, C# also supports interfaces. In
most C# programming, you don’t use pointers at all, although it is possible to create
unsafe code blocks where pointers are allowed. Probably most reassuringly, the code you
write in C# is so much like Java that you can amost paste your Java code into the Visual
Studio.NET development environment and compile it. The only difference isin the
capitalization of some of the methods. Here is some C# code for splitting a string at the
first space:
private void splitNanme(stri ng nane) {
int i = nanme.|ndexOf (" ");
if (i >0) {

frnanme = nane. Substring (0, i).Trim();
| name = nane. Substring (i + 1).Trim);

}

By comparison, you would write this same code in Java as

private v0|d splltNarre(Strlng nanme) {
int i = nane.indexOF (" ");
if (i >0) {
first = nane.substring(0, i).trim();
I ast = name.substring(i + 1).trim);

}
}

In general, the method names are much the same in the common system level classes
where you end up writing most of your code. The GUI and file I/O classes are rather
different, but since the GUI code is mostly generated for you and since you tend to
encapsulate file code in convenient ways, the differences are quite small indeed.

Inheritance in C#

C# has the same single inheritance structure as Java does, although the syntax is dlightly
more turgid and C++ like. For example, to create a class derived from SwimData, you
write

public class SexSw nDat a: Swi nDat a

and to pass data to the base class's constructor, you write a derived class constructor that
refers to the base class using reserved base keyword.

public SexSwi nData(string filenane): base(fil enane){}

| think that the Java approach is a bit easier to read:

public class SexSw nData extends Sw nData {
public SexSwi nData(String filenanme) {
super (fil enane);

C# aso alows you to create interfaces rather like Java:

public interface Milti Choice {
Arrayli st getSel ected();
void clear();
Panel get W ndow();

}

However, the C# syntax does not make it easy to distinguish inheritance from
implementation, asit looks just the same. Here we are creating a class called ListChoice
that implementsthe above MultiChoice interface.

public class ListChoice:MiltiChoice {

| think this could be a bit confusing.

Overriding Base Class Methods

C# follows the C++ custom of requiring you to declare that a method can be overridden
in derived classes by declaring the base method as virtual. Here we make a draw method
overridable:

public virtual void draw(Graphics g) {
g. DrawRectangl e (rpen, x, y, w, h);

}
Then, in the derived class, you must specify that you are overriding that method using the
override keyword:
public override void drawm Gaphics g) {

base. draw (g); //draw one rectangle
g. DrawRect angl e (rdPen, x +5, y+5, w, h);

}

You can also call the base method using the base keyword as we show here.

If you don’t want to or can’'t make the base class method virtual, you can use the new
keyword to create a method which replaces all methods of that name and any signature in
the base class with a new one.
public new void drawm G aphics g) {
g. DrawRectangl e (rpen, x, y, w, h);
g. DrawRect angl e (rdPen, x +5, y+5, w, h);
}
In this case, you no longer can cal the parent method in the base class.

VB.NET works in exactly the same way, except that the keywords are much more
awkward:

Public Overridabl e Sub draw(ByVal g As Graphics)
g. DrawRect angl e(rpen, x, y, w, h)
End Sub

Public COverrides Sub draw(ByVal g As G aphics)

MyBase. dr awm g)
g. DrawRect angl e(redPen, x + 4, y + 4, w, h)

End Sub
To replace a base method instead of overriding it, you use the Shadows keyword
inVB.NET instead of the new keyword used in C#.

Exceptions

C# provides awide array of standard exceptions that the system may through when errors
occur. These include NullReferenceException, DivideByZeroException,
FileNotFoundException, and so forth Thetry - catch syntax is quite analogous to that in
Java

try {

ts = new StreanReader (fileNane);
opened=tr ue;

}

cat ch(Fi | eNot FoundException e) {
Consol e. WiteLine (e. Message);

}

One thing that | find a major disadvantage is that C# does not have a throws keyword.
There is no way to indicate that a method can throw an exception and that you must
prepare your code for that eventuality. If some class you call throws one, you find out
when it happens, or by reading the code. So there is no way for the compiler to enforce
the need to catch exceptions.

Comparing VB.NET

Now the VB.NET system is also supported by the Visual Studio.NET devel opment
environment. Y ou can choose to build either C# or VB programs (or C++). So, the same
GUI designer is used for both, but different language specific code is generated. Thisis
the first version of VB to support inheritance, although VB has awkwardly supported
interfaces in the past two versions. Because the libraries that this new version of VB
interact with are the same ones C# uses, you now have a bunch of new, preferred class
methods to use in VB.

For example, to split astring in VB, we might write

Private Sub splitNane(nm As String)
Dmi As Integer = nml|ndexOr(" ")
If i >0 Then
Frnane = nm Substring(0, i).Trim)
Lname = nm Substring(i + 1).Trin()
End If

Not only is this much the same as C#, it is still much the same as Java. It is actually not
entirely unreasonable to convert a Java program to VB.NET by pasting the code into the
Ul designer and editing it to be correct. In fact, | have done this, and converted all of my
Java Design Patterns examples to VB.NET in avery short time. Converting them to C# is
even easier.
Inheritance in VB.NET is syntactically clunky, but the development environment
manages alot of it for you. You can create a derived class using the Inherits keyword:
Public O ass Stocks

Inherits Equities

and the Stocks class will inherit al the methods of the Equities class. Likewise, you can
define an interface:

Public Interface MiltiChoice
Function getSel ected() As Arrayli st

Sub cl ear () "clear all selected
Function get Wndow() As Panel
End I nterface

And specify classes that implement that interface rather more clearly than you do in C#:

Public O ass ListChoice
I mpl ement's Mul ti Choi ce

However, VB forces you to add some awkward syntax to every method that implements
this interface:
Public Sub clear() Inplenents Milti Choice.clear

Ist.ltens.clear()
End Sub

but the devel opment environment will generate this boilerplate for you.

VB.Net, of course, also supports the same sort of file manipulations and exceptions that
C# does, since it is effectively the same language. Thisis great for C# devel opers, but
does represent a sea change for earlier generations of VB programmers who now have to
learn a great number of new method names and some changes in syntax.

Summary

Asyou can see, the .NET languages bear alot of relationship to Java, and one might
argue that Microsoft’ s strategy is to use this similarity to tempt Java programmers to
move to their system. For certain classes of Windows applications, this clearly might
make sense. However, the contrary is aso true. Javais now a successful, widely used,
multi-platform language, and anyone who learns the .NET languages can now move out
of the fold as easily as they could move in. The .NET system may also turn out to be a
great training ground for moving VB-style programmers to Javal

James W. Cooper isthe author of 14 books. His book Java Design Patterns: a Tutorial
was published by AddisonWedley in January, 2000, and his new book Design Patterns
in VB6 and VB.Net was published in November of 2001.

