HIGHLIGHTS OF A DOCUMENT

James W. Cooper

Sometimes you need to be able to display text in severa fonts and colorsto illustrate particular
points. Frequently the easiest way to do thisisto preprocess the document text into HTML and
launch a browser instance to display that text. Y ou can also emit XML or DHTML to gain alittle
more control over the final appearance. However, if you want the user to interact with a program
that displays text in some entertaining fashion, you may find that HTML and JavaScript just
can’'t do the job and turn to the complex but ultimately satisfying approaches allows in Java.

Recently | had just a problem. | realized that selection of salient termsin along document as
well as partially decoded encrypted text were candidates for a display in which only some words
are easily visible and highlighted, while the intervening words may be inaccurate or incorrect
and need to be displayed in a more conservative or less readable fashion.

In order to implement this display, | had to understand how to use the
JTextPane

StyledDocument and DefaultStyledDocument

AttributeSet and SimpleAttributeSet

StyleConstants

5. Highlighter and HighlightPainter

classes. Thiswas a bigger learning experience than | had expected and | thought I'd tell you
about some simple ways through this thicket. Then, you'll be able to write programs that display
and highlight text in various fonts, styles and colors. Since a number of things that should have
worked did not work in Java 1.2.2, I’'ll point those out as well.

A O DN PRF

The JTextPane and the Styled Document

Java allows you to use a JTextPane to display text directly or display text in a number of styles
by setting a StyledDocument for the text pane. Like many of the other Swing objects,
StyledDocument is an interface and DefaultStyledDocument is a basic implementation of that
interface. We'll just derive our own LimitedStyledDocument from that default implementation
and use it with only a couple of changes. Some of this program is based on an example on the
JavaSoft web site, but it has been extensively rewritten to improve its object orientation and add
highlighting. Most of the classes we are discussing here are in the java.swing.text package.

The StyledDocument object has one important method: insertString, which inserts a string at an
offset in the document with particular attributes.

public void insertString(int offs, String str, AttributeSet a)

These attributes are the ones that control the font size, style and color and are instances of the
SimpleAttributeSet class. The trouble with this approach is that there are alot of different classes
to keep track of, and designing a set of simple objects that encapsulate these classes is somewhat
involved. we'll end up encapsulating alot of the complexity into a Word class, although there
may be other equally good solutions.

The AttributeSet interface is designed to provide a way to have an open-ended series of named
attributes for any display system. At the simplest level, these attributes are undefined and can be
implemented as a Hashtable. However, we would prefer not to have to invent and implement
these ourselves. We avoid this by using the static methods of the StyleConstants class which let
you refer to the various font attributes by common method names and |eave the hash coded
names and implementation buried beneath the surface. So, using these methods, we can set an
AttributeSet font size, for example, using a set of obvious methods without ever knowing how
thisis actually accomplished:

SinpleAttributeSet attr;

public void setBol d(bool ean b) {
Styl eConst ants. setBol d(attr, b); //set the style to Bold
}

Then , you use this configured instance of the SimpleAttributeSet when you call the insertString
method.

Highlighting Text
Y ou might think you could just set the Background property of text in a StyledDocument to get it
to display in adifferent color, but thisis not only incorrect, it doesn’t work either. The
setBackground method overwrites the text in the same color, so it doesn’'t display any text at all.
Instead, you have to use a Highlighter object and a Highligher.HighlightPainter object to
accomplish this.

Each JTextPane has a getHighlighter method that allows you to obtain the Highlighter object for
that pane. Y ou can add a number of highlighted text areas to the Highlighter object, specified by
character offset, so that they are highlighted regardless of the shape or resizing of the text
window.

H ghlighter hlt = textPane.getH ghlighter ();
hl t.addH ghlight (offset, length, hlp);

The final kicker is the HighlightPainter interface. Y ou must provide the class that implements the
painting of the background color. Thisinterface requires that you only implement the one
method:

public void paint (Gaphics g, int p0, int pl, Shape bounds, JTextConponent c)

where pO0 is the starting offset, pl is the ending offset, the Shape represents the area to be painted
and the JTextComponent is the text pane you will be drawing on. | found two problems with the
Java 1.2.2 implementation of this method:

The offset pl is aways the end of the document rather than the end of the string.
The Shape object contains no useful information at al.

So we have to write a HighlightPainter which draws the background without making use of some
of the information we expected to find. This was where | decided that the only way to carry all
this off was to create a Word object for each individual word we displayed and use it to store
some of this information we have to carry around. We show that complete Word object in

Listing 1.

import java.awt.*;

i mport javax.sw ng. *;
i mport javax.sw ng.text.*;

/1 This is an encapsul ation of a string to be displayed in a
//styl ed docunent. It contains the highlight information
/las well as the cunulative offset of that word in the text.
public class Wrd {

private String word; //the text

private SinpleAttributeSet attr; //the attributes
private boolean hilite; / I whet her hi ghli ght ed
private int offset; //the cunul ati ve of fset

public Wrd(String w) {
word = WtI’IrT() + "o
/lcreate a sinple attrlbute and set its font and size
attr = new SinpleAttributeSet();
Styl eConst ant s. set Font Fam | y(attr, "SansSerif");
Styl eConst ant s. set Font Si ze(attr, 9); //default size

/11 ook for underscores to indicate highlighted words

int i = word.indextf ("_");
/1if highlighted, make the font bigger, bold and red
if (i >0)

set Col or (Col or. red); /1 col or

set Font Si ze(12); /land size

hilite = true;

set Bol d(true); /I make it bold

}

// Renove the underscores
while (i > 0) {
StringBuffer buf = new StringBuffer(word);
buf.setCharAt (i, ' ');
word = buf. toStrlng ()
i = word.indexOr ("_");

}

//save the offset for fast recovery

public void setOfset(int offs) {
of fset = offs;

}

//return the stored offset
public int getOfset() {
return of fset;

}
//return whether word is to be highlighted
publ i c bool ean i sH ghlighted() {

return hilite;

/1 get the word
public String getWrd() {
return word;

/1get the word length
public int Iength() {
return word.length ();

//set the font size
public void setFontSize(int fsz) {
Styl eConst ant s. set Font Si ze(attr, fsz);

//set the color
public void setColor(Color c) {
Styl eConst ant s. set Foreground(attr, c);

}

//set whether italic

public void setltalic(boolean b) {
Styl eConstants. setltalic(attr, b);

}

//set if bold

public void setBol d(bool ean b) {
Styl eConst ants. setBol d(attr, b);

}

//get the attribute as it is currently set

public SinpleAttributeSet getAttributes() {
return attr;

}

}
Listing 1. The Word object.

The Word classin Listing 1 takes one word at atime and sets appropriate attributes for it. If the
word does not include an underscore, the attributes are set to afont size of 9 points. If the word
token contains an underscore the font size is set to 12, boldface and red. The boolean hilite is set
to true so the isHighlighted method will return true.

TheWord List

Aswe read in words, we create Word objects and keep them in alist to be referred to when we
display the text and highlights. Since the new ArrayL.ist class has slightly better performance
than the Vector class, we'll useit here. Now, we'll want to add words to the list, fetch them by
index or offset and find out if they are to be highlighted., and find out their length. We are thus
creating alist whose properties are best encapsulated into a class. Since a both the initial display
class and the HighlightPainter class will need to fetch these words, we'll put the entire array
store and fetch structure into a enclosing class. We could just consider this an aggregation class,
but since we need to get at the datain different ways, we can just about consider it a Mediator
classaswell. So, we'll name it a Mediator class as shown in Listing 2.

public class Mediator {
/1 This class hides the structure of the word Iist
/land provi des access to it sinply

private ArraylList words;

private int offset;

private int i;

public Mediator() {
words = new Arraylist();
of fset = 0O;

}
//add a word to the |ist
public void add(Wrd w) {
w. set Of fset (offset);
wor ds. add (w);
offset += w.length ();
}
//get the word at index i
public Word get(int i) {
return(Word) words.get (i);

//find the word at the offset specified
public Word findWwrd(int offs) {

i = 0;

Word w = get (i ++);

while (wgetOfset () < offs & i < words.size ()) {
w = get(i++);

w=get(i - 1);
return w

//find the word before the specified offset
public Wrd findLastWord(int offs) {
findword(of fs);
return get(i-2);

//get the size of the word |ist
public int size() {

return words.size ();
}

}
Listing 2—The Mediator class containing the Word list

L oading the Word List and Highlight List

Weread in the words, aline at atime, using the StringTokenizer to separate words. As we create
each Word object, we check for underscores as we describe above.

InputFile f = new InputFile("convl.txt");
String s = f.readLine();
while (s '= null) {
par seTokens(s);
s = f.readLine();

f.close();
R T T P
private void parseTokens(String s) {
StringTokeni zer tok = new StringTokeni zer(s);
whi | e(t ok. hasMor eTokens ()) {
Word w = new Word(tok. next Token ());
ned. add (w);

med. add(new Word("\n"));
}

L oading the Wordsinto the StyledDocument

Once we have read in the list of words and identified which are to be highlighted, we load them
into the LimitedStyleDocument in a simple loop:

for (int i =0; i <medsize(); i ++) {
| sDoc.insertString(ned.get(i));
}

The LimitedStyleDocument just calls the insertString method. If the word is to be highlighted it
adds it to the highlight list.

public class LimtedStyl edDocunent extends DefaultStyl edDocunent {
i nt maxChar act ers;
int offset;
H litePainter hlp;
JText Pane t ext Pane;

public LimtedStyl edDocunent (i nt maxChars, Mediator md) {
maxCharacters = maxChars;

of fset = 0;
hlp = new H litePainter(md);

}

|/ save text pane object

public voi d set Text Pane(JText Pane txp) {
t ext Pane = t xp;

/linsert string into Styl edDocunent
public void insertString(Wrd word) {
if ((getLength() + word.length()) <= naxCharacters) {

try {

super.insertString(offset, word.getWrd(), word.getAttributes());

/1if highlighted, add to highlight Iist

if (word.isH ghlighted ()) {
Hi ghlighter hlt = textPane.getH ghlighter ();
hlt.addH ghlight (offset, word.length() + offset,

of fset += word. | ength();
} catch (BadLocati onException e) {

}
Painting the Highlights

hl p);

The HighlightPainter class paints the background of any word that isto be highlighted. Aswe

noted above, the Shape and second offset parameters are not correctly set to be useful, so we use
areference to the Mediator class to fetch the word at that offset, and find its length. We also use
the model ToView method to find the Rectangle defined by that word. In thisimplementation, we

paint a background highlighted rectangle in yellow.

public class HilitePainter inplenents H ghlighter.H ghlightPainter {
private Mediator ned;

public H litePainter(Mdiator md) {
nmed = nd;

}
public void paint (Gaphics g, int pO, int pl, Shape bounds, JText Component c) {

int offset = 0;

g. setCol or(Col or.yellow); //paint bbackround in yell ow
Rectangle r = null;
Rectangle rl1 = null;
//set each rectangl e
try {
r= c. nodel ToVi ew (p0);
Word w = med. fi ndWword(p0); //find word begini ng there
//find of fset of next word
offset = wgetOfset() + wlength ();
rl = c.nodel ToView (of fset);
} catch (BadLocati onException ex) {
Systemout.println("Bad of fset");
r = bounds. get Bounds ();

//draw rectangl e for background
g.fillRect(r.x, r.y, (int)Math.abs(rl.x - r.x), r.height);

}
We show the highlighted text in Figure 1.

E;g T et Highlighting D'ema

Abstract —
Blah blah blah J&wa . Blah blah blah INtErnet blah blah blah blah balh blah World
Wide Web blah.
Introduction
Blah biah blak World YWide Web, biab blah blah blah. J8wa blah blah blah
Internet . bizh blah blah blah? Blah blah blah YWiek . Biah blab blab Java iblah)
blah blah blah. Blah blah blah blah J@waSCcript{1). Blah blah biah blah. Blah blah
blah, blah blah blah blah. Blah Inkernet biah biah Yek biah biah. Blah blah blah blah
blah blah WWek . Blah blah blah blah J&W&. Blah blah blah. Blah blah blah blah blah
Weh blah. ¥adda vadda yvadda. Blah blah blah blah JavaScript , Blah blah bliah.
Blah blah biah Wek . Blah blah blah blah. Blah bish blab blab, IIErmet biah blah
blah. Blah blah blah blah. Blah blah blah blah JaWaScCript . Blab blah blah balh. Blah
Internet biah biah Yeh baltb Ifernet . Blah blah blah J8Wa (balh) balh blah
blah. Blah blah blah blah blzh. Blah blah blah blah? Blah blah blah blah INtErmet . elah
blah blah Blah JavaScript . elah blah balh blizh YWeb . Blah blah. Blah blah balh.
Blah blah biah blah blah. Blah J&@wa . Blah blah blah. Blah blah blah blah blah.
Conclusion _:l

Figure 1. The highlighted text.

The text displayed in this window is excerpted from “ The Ultimate Publishable Computer
Science Paper for the 90s,” by my colleagues Richard Lam and Sherman Alpert, in the January
1997 issue of the Communications of the ACM.

Inter cepting Mouse Clicks

Once you have the highlighted display, you probably want to click on it to select aword and
operate on it. You can use a MouseListener method in a MouseAdapter inner class to display the
text of the selected word in the text field below the window, as shown in Figure 2.

E;g T et Highlighting D'ema

blah blah blah. Blah blah blah blah JavaScript(1). Biah blah blah blah. Blah blah
blah, blah blah blah blah. Blah INEEBrAEL bish blah YWWek blah biah. Blah blah blah blah
blah blah YWek . Blah blah blah blah J@W&. Blah blah blah. Blah blah blah blah blah
Web blah. ¥adda vadda yadda. Blah blah blah blah JavaScript , Biah blah blah.
Blah blah blah WWek . Blah blah blah blah. Blah blah blab blah. IEECMET blah blah
blah. Blah blah blah blah. Blah blah blah blah JAWaSCript . Blab blah blah balh. Blah
Internet biah biah WWeh balh Intnarne[§ Blah blah blah J&@wa (balh) balh blah
biah. Blah blah blah blah bish. Blah blah blah Blab? Blah blah biah bliah EEernet . eiah
blah blah Blah JawaSCript . blah blah balh blah YWeh . Blah blah. Blah blah balh.
Blah blah blah blah blah. Blah J&@wa . Blah blah blah. Blah blah biah blah blah.
Conclusion

Blah blah blah Itermet . plah blah blah blah blah, blah blah blah blah Wel . Blab
Blah. J&Wa . Blah biha blzh blah. Yadda yadda yadda.

¢11 Blah blah blah Java blah Ca+ .

Ll

Ilntern et.

Figure 2 — The highlighted display showing the selected term.
The inner class is shown below:

cl ass M.isten extends MuseAdapter {
public void noused i cked(MouseEvent e) {
Poi nt pt = new Point(e.getX(), e.getY());
int offset = textPane.vi ewloMdel (pt);
Wrd w = ned. findLast Wrd (of fset);
txt.set Text (w.getWord ());

An Exercisefor the Reader

Y ou may have noticed that multiword terms to be highlighted may wrap, depending on the
window size. In this case, the highlighting runs off to the right instead of wrapping with it. How
could you modify the program to prevent this from happening? I’ ve thoiught of two solutions.
Can you?

Patterns we Used

Y ou can see that we are probably using a Mediator class in this program. In addition, we could
consider the Mediator plus the Word class as a Fagade pattern, where two class encapsulate
several more complex lower level classes. Can you find any others?

