Handling SAX Errors
James W. Cooper

Y ou're charging away using some great piece of code you wrote (or someone else wrote)
that is making your life easier, when suddenly plotz! boom! The whole thing collapsesin
some useless Java error you don’t understand and don’t want to track down. Why do
people write stuff like that? Well, because handling errorsis alot of trouble and it is
much easier to leave them “as an exercise for the reader.”

In his book on Extreme Programming, Kent Beck emphasizes that you should write the
tests for each method before you write the method. Nice work if you can get it, but no
one thought of that when they wrote the SAX parser and after the fact thisis kind of
tricky. But you do have to handle the inevitable errors that arise from incorrect XML. It's
just that error recovery is necessarily limited.

SAX Redux
Last month, we discussed writing a simple SAX parser handler to find small documents
in alarge file of concatenated documents. To review, we decided that it would be more
efficient to process a stream of short documents in a single file than to do all the 110
necessary to open and close each of the filesin alarge collection. So, we created a smple
XML file format where we used XML tags to represent the documents and their titles:
<col | >

<segnent >

<title PMD="xxxx">title of doc 1</title>

text of docunent 1
</ segnent >

<segnent >
<title PMD="yyyy">title of doc 2</title>
text of docunent 2
</ segnent >
</coll>

Now, the SAX parser that is built into Java 1.4 is much the same as previous external
parsers. You tell it where the routines are that extend the DefaultHandler class and start it
to work. When it finds a new XML tag, it calls the startElement() method, and when it
finds an end tag, it calls the endElement() method. In between, it makes one or more calls
to the characters() method to pass on all the text it finds.

Now, expanding on the concepts of last month, we really want to create a class that
extends the SAX DefaultHandler, and put the three methods named above init. In
addition, we can keep the document list in that class and ask for it when the parsing is
done. The complete classis shown in Listing 1.

Listing 1 — A DocParser Classthe extendsthe SAX DefaultHandler

public class DocParser extends Defaul t Handl er {
private StringBuffer buffer;
private String title;
private Vector docs;

private String nanme, val ue;
private Document doc;

/**
* Constructor for DocParser
*/
publ i c DocParser() {
super () ;
docs = new Vector();
}
[]------

/lall characters between tags accumnul ate here
/1 may be called any nunber of times between tags.
public void characters(char[] ch
int start, int |ength)
t hrows SAXException {
buf fer. append(ch);

/la tag has been started
public void startEl ement (
String uri,
String | ocal Nane,
String gNane,
Attributes attrib)
t hrows SAXException {
buffer = new StringBuffer(); //create a new buffer

i f (gNane. equal s("segnent")) {
//see if there are any attributes
int length = attrib.getLength();
if (length > 0) { //if there are save the first one
name = attrib. get QNane(0);
value = attrib.getValue(0); //this is the PMD
doc = new Docunent(value); //create a docunent

/la tag has ended
public void endEl enent (String uri, String |ocal Name, String
gNane)
t hrows SAXException {

i f (gNane. equal s("segnent")) {
String buf = buffer.toString();
StringTokeni zer tok = new StringTokenizer (buf);
doc. set Si ze(t ok. count Tokens());
docs. addEl enent (doc) ;
doc = null; //nmeans there is not one in progress
}
if (gName.equals("title")) {
title = buffer.toString().trim();
doc.setTitle(title);

/lreturn the list of docunents
public Vector getDocs() {
if (doc !'= null) {
docs. addEl enent (doc) ;
}

return docs;

}
}
Using the DocPar ser Class
If everything worked without error, we would just use this class by creating an instance
of a SAXParser and giving it afile to parse, and an instance of the DocParser to call
when it finds each tag.

SAXPar ser Fact ory sFact = SAXParser Factory. newl nstance();
parser = sFact.newSAXParser ();

String fName = dataPath + fil eNaneg;

par ser. parse(new Fil e(f Name), docParser);

docs = docParser.getDocs() ;

The DocParser collects a Vector of Document objects, each containing atitle and URL,
and when the parser completes we just call the printDocumentList method and print out
the list of documents.

private void printDocunmentList() {
/'l get the Vector of Docunents
if (docParser != null) {
docs = docParser. getDocs();
Iterator iter = docs.iterator();
int i = 1;
/[lprint out the size, ID and title of each one
while (iter.hasNext()) {
Docunment doc = (Document) iter.next();
System out. println(
| ++ +"
+ doc.getSize() + "
+ doc.getID() + "
+ doc.getTitle());

}
}
The output of this method for our test data of 4 short document is:

1 225 11960384 Activation of caspase-3 and ¢
2 427 11960380 Bl oom s syndronme protein respo
3 429 11960378 Constitutive activation of Sta
4 433 11960377 Overexpression of B-type cycl

Handling Errors
There are redly only afew errors that the SAX parser can throw, and they are thrown
when it encounters one kind of illegal XML or another. These exceptions are

An |OException — if it cannot find or read the file.

A SAXConfigurartionException — if the parser is configured wrong in some way.

A SAXException, for any kind of illegal XML. Y ou can get more information
from the error messages, but can’t recover from this.

But, other than exiting gracefully, what can we do with this information?

WEell, in this particular case, we are accumulating alist of documents from the parser, and
we really don’t want to throw away all the prior documents because a later oneis
incorrect. So, we catch these exceptions and then go on to dump whatever data has been
accumul ated:

docParser = new DocParser();

try {
SAXPar ser Factory sFact =

SAXPar ser Fact ory. newl nst ance() ;

parser = sFact.newSAXPar ser ();

String fNane = dataPath + fil eNang;

parser. parse(new Fil e(f Nane), docParser);
} catch (SAXException e) {

Systemout.println("SAX error:"+e. get Message());
} catch (ParserConfigurati onException e) {

Systemout.println("Config error:"+e. get Message());
} catch (1 OException e) {

Systemout.printin("IO error:"+ e.getMessage());
}

print Docunent Li st ();

Note that we call the printDocumentList() method outside the exception handling block,
so it is called regardless of whether an exception has been caught or not. We could just
easily have written this inside a finally clause.

Just as critical to our success is this simple addition to our getDocs method in the
DocParser class:

/lreturn the list of docunents
public Vector getDocs() {
if (doc !'= null) {
docs. addEl enent (doc) ;
}

return docs;

}
It adds a partially accumulated document to the list if one has been started, but the parser

has failed partway through the document. Since we carefully have initialized al the fields
of the Document object to non-null in the constructor,

public Docunent(String id) {
this.id = id;
title = ""
size = 0;
}
we will always get back at least the id, even if parsing fails on the title.

Building Some Tests
Now that we have more or less bullet-proofed the code, let’s see how we can arrange to
test it. We'll start by putting the document parsing into a method by itself:

public void parseDocunents(String path) {
docParser = new DocParser ();
try {
SAXPar ser Factory sFact =
SAXPar ser Fact ory. newl nst ance() ;
parser = sFact.newSAXParser ();
par ser. parse(path, docParser);
} catch (SAXException e) {
Systemout.println("SAX error:" + e.getMessage());
} catch (ParserConfigurationException e) ({
Systemout.println("Config error:" + e.getMessage());
} catch (1 OException e) {
Systemout.println("lOerror:" + e.getMssage());
}

pri nt Docunent Li st();

}
My strategy for testing isto start with alegal XML file and make afew illegal changes

and test it. To do this, we have to write a file each time with these changes, because the
SAXParser expects afile, not a buffer. So we just create and write a temp file each time.

public void parse_a_doc(String buffer) {

[Iwite a tenmp file

File tenpFile = null

try {
tenpFile = File.createTenpFil e("sax", "tmp");
FileWiter fw = new FileWiter(tenpFile);
fwwite(buffer);
fw. close();

} catch (1 OException e) {
System out. println(e.get Message());

}

/I parse the docunents and print the results
par seDocunent s(t enpFi | e. get Absol ut ePat h()) ;
tenpFil e.delete();

}
For actua testing, | thought of 3 invalid XML casesto test.
1. Anincorrect <?xml declaration.
2. Anincomplete <title> tag.
3. Anillega character suchas“&”.

So we put the entire file in a StringBuffer and make these modifications:

String buffer =""
/|l parse the original data file
try {
| nput Docunent doc =
new | nput Docunent (dataPath + fil eNane);
buffer = doc.getBuffer();
} catch (1 OException e) {
System out. println(e.get Message());
}

parse_a_doc(buffer);

/[Inow try the same thing with an invalid XM. header
StringBuffer sbuf = new StringBuffer(buffer);
int i = buffer.indexOF("?xm");
sbuf.replace(i, i + 1, " ");
parse_a_doc(sbuf.toString());

//remove part of a <title> tag
i = buffer.indexOF("<title>");
i = buffer.indexOf("<title>", i+1);
sbuf = new StringBuffer(buffer);
sbuf.replace(i, i+7, "<title ");
parse_a_doc(sbuf.toString());

//add an illegal & character
i = buffer.indexOf("<title>");
i = buffer.indexOf("<title>", i+1);

sbuf = new StringBuffer(buffer);
sbuf.insert(i+50," & ");

parse_a_doc(sbuf.toString());

Here are the results of these test cases, starting with the legal one:

1 225 11960384 Activation of caspase-3 and cl

2 427 11960380 Bl oom s syndrone protein respo

3 429 11960378 Constitutive activation of Sta

4 433 11960377 Overexpression of B-type cycl

SAX error:The markup in the docunent preceding the root el ement nust be
wel | - fornmed.

SAX error:Attribute nane "title" nust be followed by the '=" character
1 225 11960384 Activation of caspase-3 and cl

2 0 11960380

SAX error:The entity nanme nust inmediately followthe '& in the entity
ref erence.

1 225 11960384 Activation of caspase-3 and cl

2 0 11960380

SAX isEven Safer

So just like children’ s toys and American cars, code still breaks alot, but putting some
tests into your code can be a great help in making sure you are really handling
unexpected errors in an expected way. | actually made a number of modifications to my
assumed-correct code before it worked as well as the final version in this article. So the
work isrealy worth doing. You'll write better code if you write some tests to make sure
you are handling errors thoroughly. Y ou don’'t have to be utterly exhaustive in your
testing, but hitting the main high points will definitely improve your code. Let’s leave
plotzand boom to Marvel comics!

