A CHALLENGING TITLE SEARCH

James W. Cooper

Sometimes | marvel at the ingenuity of programmers in making ordinary HTML look so
sophisticated on browser screen. For all the limitations of HTML, there are alot of beautiful web
sites that good designers and programmers have constructed without resorting to active
components or style sheets.

The downside of al this clevernessisthat the HTML itself can be confusing, opague and
downright ugly to read. It sometimes approaches coding “pornography.” (“I don’t know how to
defineit, but | know it when | seeit.”) Some of these pages are generated directly by
programmers and designers and others are the result of HTML-generators that take documentsin
other formats and convert them to HTML.

Imagine, then, the assignment of indexing a bunch of random web pages from a specific crawl,
or even on your own private server. It could very well be that you will find severa styles, or in
the worst case that you will find no two aike.

Despite these difficulties, you could well need to solve the problem of just compiling alist of
titles and URL s for the pages on your server. To illustrate the problem of even finding the title of
apage, | pulled out 3 HTML documents from different sourcesto look at. The first is from the
IBM Patent Server:

<HTM_><HEAD>
<META NAME="TI TLE" content="Sof tware versi on managenent systeni>
<META NAME="PUBDATE" content="12/10/1985">

<TI TLE>Pat ent Server: 4558413 Detailed View </ Tl TLE>
<META NAME="owner" CONTENT="pat serv@l naden. i bm cont >
</ HEAD>

Here the useful titleisin the first META tag. The string inside the <TITLE> tag is much less
descriptive.

In a Javadoc from the Java 2 documentation, we find the following:

<! DOCTYPE HTM. PUBLIC "-//WBC// DTD HTM. 4. 0//EN'>

<! - - NewPage- - >

<HTM_>

<HEAD>

<!-- Generated by javadoc on Tue Apr 20 23:19:54 PDT 1999 -->
<TI TLE>

Java Servl et APl Docunentation: O ass Cookie

</ TI TLE>

Our titleis at least inside the <TITLE> tags here.

However, if you look at one of the examples provided in the JSP Development Kit, also from
Sun, you'll see an even more unexpected approach:

<htm >

<head>

<title>Untitled Docunent</title>

<meta http-equi v="Cont ent-Type" content="text/htm ; charset=iso-8859-1">
</ head>

<body bgcol or =" #FFFFFF" >

<p>

<h3>Sour ce Code for Session Exanpl e

 </ h3>

The text inside the <H3> tag is really the only title we have. The text inside the <title> tag is
useless here.

So, it might seem impossible to write atitle finder for all seasons, and in fact it is pretty difficult.
But, if you consider only a constrained set of documents on your own server, you might be able
to whittle down the places to find document titles to a tractable few and write code to handle
them.

An Abstract Base Class
Let’s start by defining a base class which reads the files.

/** A base abstract class defining the
behavi or of the HTM.Doc cl ass*/

public abstract class HTM.Doc {
InputFile fl; //1ocal file variable

/[constructor
public HTM.Doc(String fil enanme) {
fl = new InputFile(filename);

}

//read next line fromfile
public String getNextLine() {
return fl.readLine();

}

//get title in various ways
public abstract String getTitle();

}

We use the InputFile routine we developed earlier and encapsulate it inside asimple HTMLDoc
class. Note that we make the getTitle method abstract and do not give it a body. Instead, we will
derive classes from it for each of the types of HTML documents we' ve found.

For example, our Patent server documents can be parsed with the following PatentDoc class:

/I docunents from | BM Patent server
public PatentDoc(String filenanme) {
super (fil enane);

//1n Patent server docunents,
//the title is in the first META tag
public String getTitle() {
String s="";
do {
s = get Next Li ne();

} while (s.indexOF ("<META') < 0);
int index = s.indext ("content=") + 9;
s = s.substring (index);

int last = s.indexOf ("\"");

s = s.substring (0, last);

return s;

}
}

and our JavaDoc documents can be parsed with the JavaDoc class.

public class JavaDoc extends HTM.Doc {
/I parse Javadoc docunents
public JavaDoc(String fil ename) {
super (fil ename);

//1n Javadoc files, the title is inside the
//<title> tag
public String getTitle() {
String s= "";
do {
s = get NextLine();
} while(! s.trinm().equals ("<TITLE>"));
return get NextLine().trim();
}
}
and so forth. Thus, if we were to write a program to get the titles from these three classes of

documents, it might be as simple as
public class Titler {
public Titler() {
HTML.Doc ht; //instance of base cl ass
/lprint out titles from3 different HTM. doc types
ht = new Pat ent Doc("4558413. htm ");
Systemout.printin(ht.getTitle());

ht = new JavaDoc(" Cookie. htm");
Systemout.printin(ht.getTitle());

ht = new HowTo("sessions. htm");
Systemout.printin(ht.getTitle());

static public void main (String[] argv) {
new Titler();
}

}

This probably seems pretty straightforward to you, and indeed it really is. However, if you look
at the UML diagram in Figure 1 that | generated using JVISION you can see something else
pretty clearly.

InputFile
HTMLDoc P
ffrom default)
DR InputFile
+HTMLDDF T scheckEr
+gethlextline fl
$T it +cloze
+ge (R +read
+readline
HowTo JavaDoc PatentDoc
[from default] fram default] [fram default]
+HowTo +Javalloc +PatentDoc
+getTitle +getTitle +getTitle

Figure 1 — The UML Diagram of the HTMLDoc class and its derived classes.

The base HTMLDoc class has two methods which are implemented in the base class: the
constructor and the getNextLine method. The getTitle method is abstract as shown in the
diagram, and it is implemented (differently) in each of the derived classes. This sort of
configuration is an example of a Template Method pattern.

Kindsof Methodsin a Template Class

As enumerated in Design Patterns, the Template Method pattern has four kinds of methods that
you can make use of in derived classes.

1. Complete methods that carry out some basic function that al the subclasses will want to use,
such as getNextLine in the above example. These are called Concrete methods.

2. Methodsthat are not filled in at al and must be implemented in derived classes. In Java, you
declare these as abstract methods, and that is how they are referred to in the pattern
description.

3. Methods that contain a default implementation of some operations, but which may be
overridden in derived classes. These are called Hook methods. Of course this is somewhat
arbitrary, because in Java you can override any public or protected method in the derived
class, but Hook methods are intended to be overridden, while Concrete methods are not.

4. Finally, a Template class may contain methods which themselves call any combination of
abstract, hook and concrete methods. These methods are not intended to be overridden, but
describe an agorithm without actually implementing its details. Design Patterns refers to
these as Template methods.

Using Template M ethods
Now, the above Titler program parses the three documents and produces the following output:

Sof t war e versi on managenent system
Java Servlet APl Docunentation: Cass Cookie

Source Code for Session Exanple

Note that the words in the second title are unevenly spaced, because they are unevenly spaced in
the source HTML document. We would like to space them more evenly regardiess of how we
find them, and we can introduce a getCompactTitle method to do this.

//get words in title without extra spaces
/1 This is a tenplate nethod
public String getConpactTitle() {
StringTokeni zer tok = new StringTokenizer(getTitle());
Vector words = new Vector();
whi | e(t ok. hasMor eTokens ()) {
wor ds. addEl erent (t ok. next Token ());

}

String newTitle =""
for(int i=0; i< words.size(); i++)

newTitle += (String)words.elementAt (i) + " "
return newTitle;

}
This method does not need to reside in the derived classes. It can be part of the base class, even if

some of the methods it calls are abstract in the base class. Thus it seems like the code in the base
classis calling the getTitle method in the derived classes. Thisis referred to as a template
method, or what Design Patterns refers to as the Hollywood approach, or “Don’t call us, we'll
call you.” Actually, the calls all originate in the derived class and ripple up to the parent class to
be resolved.

A Hook Method

Now we don’'t have to require that the getTitle method be abstract if we don’t want to. We could
have a ssmple method that we usually override, such as one that looks for text inside an <h1>

tag.

//This is a hook nethod
public String getTitle() {
//in the base class, we'll |ook for <hl>
Strings = ""
do {
s = get NextLine();
} while (s.indext ("<hl>") <0);
s=s.substring (4);

int i = s.indexCF ("<");
s=s.substring (0, i).trim();
return s;

}
If we have a method that we intend to be overridden, that is one we can refer to as a Hook

method.

Adding a Factory

Of course, it is not likely that we would know from file to file which of the various derived
classes to use. Instead, we would probably use a Factory method to compute which the correct
class would be. We have written a simple HTDocFactory class below that decides which class to
instantiate based on the occurrence of simple terms. Thiswould, of course, need to be expanded
for more realistic uses, but illustrates the approach:

public class HTM.Factory {

String fil eNane;
InputFile fl;
//finds strings in an HTM. file and creates
//the correct HTM.Doc derived cl ass
public HTM.Factory(String file_nane) {
fileName = fil e_nane;
/lopen file to ook for clues
fl = new InputFile(file_nane);
}
R
//get the correct class
publ i c HTM_Doc get HTDoc() {
HTM.Doc ht = null;
String s = fl.readLine().toLowerCase();

/lscan through file |ooking for clues
while((ht == null) && (s!'=null)) {
if(s.indexO ("<neta") >= 0) {

ht = new Pat ent Doc(fil eNane);

}
if(s.indextr ("!doctype") >= 0) {
ht = new JavaDoc(fil eNane);

}
if(s.index™ ("untitled docunent") >= 0) {
ht = new HowTo(fil eNane);

}

s = fl.readLine().toLowerCase();
}
fl.close();
return ht;

}
}
Then, our final main program is one that fetches those class unbeknownst to the programmer and
prints out the results:

public class FactoryTitler {
public FactoryTitler() {
HTML.Doc ht; //instance of base cl ass
/lprint out titles from3 different HTM. doc types
/lusing a factory to determ ne which to use
ht = new HTM_Fact ory("4558413. html ") . get HTDoc() ;
Systemout. println(ht.getConpactTitle());

ht = new HTM_.Fact ory(" Cooki e. ht mM ") . get HTDoc() ;
Systemout. println(ht.getConpactTitle());

ht = new HTM_Fact ory("sessi ons. htm ") . get HTDoc() ;
Systemout. println(ht.getConpactTitle());

static public void main (String[] argv) {
new FactoryTitler();
}
}

We see clearly how these classes interact in Figure 2.

InputFile

HTMLDoc rom defautt
(from default) +InputFile
+HTMLDoc . +checkErr
+getCompactTitle +cloze
+QEI-|P:]tE|}{thE «creates» :I/ ik
+getTitle / +readLine
T HTMLFactory
(from defaul]
+HTMLF actary
HowTo JavaDoc PatentDoc ol
(from defautf (from default {from default]
+HowTa +lavaloc +FatentDoc
+etTitle +netTitle +getTitle
Figure 2 —The UML diagram of the HTML Factory, Hook and Template methods of the
Template Method pattern.
Summary

We ve seen that the Template Method Pattern describes things you probably have done any
number of times. However, by recognizing the various features we see in the Template, we may

be able to make more effective use of it in our future programming.

Refer ences

1. Gamma, Eric; Helm, Richard; Johnson, Ralph and Vlissides, John, Design Patterns.

Elements of Reusable Software., Addison-Wesley, Reading, MA, 1995.

Cooper, James W. Java Design Patterns. A Tutorial, Addison-Wesley, Reading, MA, 2000

3. ThelBM Patent Server can be found at http://www.patents.ibm.com

