
1

The Factory Down the Road
James W. Cooper

A few months ago, we talked about the basic Factory pattern. That pattern is widely used
all through the programming community, in any number of object oriented languages.
Briefly, this pattern is simply a class which returns one of a number of related classes
based on some input parameter.

For example, in Figure 1, we see a base class X that has two derived classes XY and XZ.

Figure 1- A simple class X, its two derived classes and a simple Factory.

Then we write another class called XFactory which has a method

public X getX(int selector) {
 switch (selector) {

case 0:
return new XY();

case 1:
return new XZ();

}
}

2

This getX method returns an instance of XY or XZ depending on the value of some input
parameters, such as the simple selector argument we show here. Obviously the
computation that decides which of several of child classes to return can be as complex as
needed. The important point is that the Factory returns one of the classes but the calling
program never needs to know which one: they all have the same public methods but
different internal implementations. These simple factories can be useful in developing
programs that effectively conceal their implementation details inside classes and gain
more flexibility in the process.

The Factory Method Pattern
A more sophisticated and powerful kind of factory is described in the well-known Gang
of Four’s Factory Method Pattern. This pattern does not actually have a decision point
where one derived class is directly selected over another class. Instead, programs written
to this pattern define an abstract class that creates objects, but lets each subclass decide
which object to create. This sounds like a really powerful approach, but like many new
concepts it’s a little easier to understand with a concrete example.

After a little thought, it occurred to me that a pretty simple example can be drawn from
the way swimmers are seeded into lanes in a swim meet. When swimmers compete in
multiple heats in a given event, they are sorted to compete from slowest in the early heats
to fastest in the last heat, and arranged within a heat with the fastest swimmers in the
center lanes. This is referred to as straight seeding.

Now, when swimmers swim in championships, they frequently swim the event twice.
During preliminaries everyone competes and the top 12 or 16 swimmers return to
compete against each other at finals. In order to make the preliminaries more equitable,
the top heats are circle seeded, so that the fastest three swimmers are in the center lane in
the fastest three heats, the second fastest three swimmers in the next to center lane in the
top three heats. Typically, swimmers swim the shorter events twice, but frequently they
swim the longer events only once at championships. One might think that this is to
prevent exhaustion but those who have ever watched 10 heats of the 1650 yd freestyle
realize that it has the gripping excitement of watching paint dry, and the reason may well
be spectator fatigue.

OK, enough sports, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’s design an abstract Event class:

public abstract class Event {
 protected int numLanes;
 protected Vector swimmers;

 public abstract Seeding getSeeding();
 public abstract boolean isPrelim();
 public abstract boolean isFinal();
 public abstract boolean isTimedFinal();
 }

This defines the methods simply without any necessity of filling in the methods. Then we
can derive concrete classes from the Event class, called PrelimEvent and

3

TimedFinalEvent. The only difference between these classes is that one returns one kind
of seeding and the other returns a different kind of seeding.

We also define an abstract Seeding class having the following methods:

public abstract class Seeding {
 public abstract Enumeration getSwimmers();
 public abstract int getCount();
 public abstract int getHeats();
}

We derive two concrete seeding classes: StraightSeeding and CircleSeeding. The
PrelimEvent class will return an instance of CircleSeeding and the TimedFinalEvent class
will return an instance of StraightSeeding. Thus we see that we have two hierarchies: one
of Events and one of Seedings. We see these two hierarchies illustrated in Figure 2.

Figure 2 –The Seeding hierarchy and the Event hierarchy.

We can learn a lot from the simple UML diagram in Figure 2. First, we see that Event is
an abstract class and has two concrete classes derived from it: PrelimEvent and
TimedFinalEvent. Then we see that Seeding is also an abstract class and that it has
StraightSeeding derived from it. Since circle seeding reuses the methods of straight
seeding for heats after the first three, we derive CircleSeeding from StraightSeeding.
They are still both instances of the base Seeding class.

In the Event hierarchy, you will see that both derived Event classes contain a getSeeding
method. One of them returns an instance of StraightSeeding and the other an instance of
CircleSeeding. So you see, there is no real factory decision point as we had in our simple
example. Instead, the decision as to which Event class to instantiate is the one that
determines which Seeding class will be instantiated.

While it looks like there is a one to one correspondence between the two class
hierarchies, there needn’t be. There could be many kinds of Events and only a few kinds
of Seeding that they use.

4

The Swimmer class
We haven’t said much about the Swimmer class, except that it contains a name, club age,
seed time and place to put the heat and lane after seeding. The Event class reads in the
Swimmers from some database (a file in our example) and then passes that Vector to the
Seeding class when you call the getSeeding method for that event.

The Event Classes
We have seen the abstract base Event class above. In actual use, we use it to read in the
swimmer data (here from a file) and pass it on to instances of the Swimmer class to parse

public abstract class Event
 {
 protected int numLanes;
 protected Vector swimmers;
 public Event(String filename, int lanes) {
 numLanes = lanes;
 swimmers = new Vector();

 InputFile f = new InputFile(filename);
 String s = f.readLine();
 while(s != null) {
 Swimmer sw = new Swimmer(s);
 swimmers.addElement(sw);
 s = f.readLine();
 }
 f.close();
 }
 public abstract Seeding getSeeding();
 public abstract boolean isPrelim();
 public abstract boolean isFinal();
 public abstract boolean isTimedFinal();
 }

Our PrelimEvent class just returns an instance of CircleSeeding:

public class PrelimEvent extends Event {
 //creates a preliminary event which is circle seeded
 public PrelimEvent(String filename, int lanes) {
 super(filename, lanes);
 }
 public Seeding getSeeding() {
 return new CircleSeeding(swimmers, numLanes);
 }
}

while the TimedFinalEvent returns an instance of StraightSeeding:

public class TimedFinalEvent extends Event {
//creates an event that will be straight seeded
 public TimedFinalEvent(String filename, int lanes) {
 super(filename, lanes);
 }
 public Seeding getSeeding() {
 return new StraightSeeding(swimmers, numLanes);
 }
 }

5

Straight Seeding
In actually writing this program, we’ll discover that most of the work is done in straight
seeding. The changes for circle seeding are pretty minimal. So we instantiate our
StraightSeeding class and copy in the Vector of swimmers and the number of lanes

public StraightSeeding(Vector sw, int lanes) {
 Swimmers = sw;
 numLanes = lanes;
 count = sw.size();
 calcLaneOrder();
 seed();
 }

Then, as part of the constructor, we do the basic seeding.

 //--------------------------------
 protected void seed() {
 //loads the asw array and sorts it
 sortUpwards();
 //number in last heat
 int lastHeat = count % numLanes;
 if (lastHeat < 3)
 lastHeat = 3; //last heat must have 3 or more
 int lastLanes = count - lastHeat;
 numHeats = count / numLanes;

 if (lastLanes > 0)
 numHeats++; //compute total number of heats
 int heats = numHeats;

 //place heat and lane in each swimmer's object
 int j = 0;
 //load from fastest to slowest
 //so we start with last heat # and work downwards
 for(int i = 0; i < lastLanes; i++) {
 Swimmer sw = asw[i]; //get each swimmer
 sw.setLane(lanes[j++]); //copy in lane
 sw.setHeat(heats); //and heat
 if(j >= numLanes) {
 heats--; //next heat
 j=0;
 }
 }
 //Add in last partial heat
 if(j < numLanes)
 heats--;
 j = 0;
 for(int i = lastLanes-1; i<count; i++) {
 Swimmer sw = asw[i];
 sw.setLane(lanes[j++]);
 sw.setHeat(heats);
 }
 //copy from array back into Vector
 Swimmers = new Vector();
 for(int i=0; i< count; i++)
 Swimmers.addElement(asw[i]);
 }

6

This makes the entire array of seeded Swimmers available when you call the
getSwimmers method.

Circle Seeding
The CircleSeeding class is derived from StraightSeeding, so it copies in the same data.

public class CircleSeeding extends StraightSeeding {

 public CircleSeeding(Vector sw, int lanes) {
 super(sw, lanes); //also straight seeds
 super.seed();
 seed();
}
//----------------------------
protected void seed() {
 int circle;

 //circle seed top heats if there are 2 or more
 if (numHeats >=2) {
 if(numHeats>=3)
 circle = 3;
 else
 circle = 2;
 //this just replaces the top heat seeding
 //and leaves the rest untouched
 int i= 0;
 for (int j=0; j < numLanes; j++) {
 for(int k=0; k < circle; k++) {
 asw[i].setLane(lanes[j]);
 asw[i++].setHeat(numHeats - k);
 }
 }
 }
 }
}

Since the constructor calls the parent class constructor, it copies the swimmer vector and
lanes values. The, our call to super.seed() does the straight seeding. This simplifies
things, because we will always need to seed the remaining heats by straight seeding. Then
we seed the last 2 or 3 heats as shown above and we are done with that type of seeding as
well.

Our Seeding Program
No study of classes and data handling is complete unless we show a working example of
the resulting final program at work. In this example, we took a list of swimmers in the
500 yd freestyle and the100 yd freestyle and used them to build our TimeFinalEvent and
PrelimEvent classes. You can see the results of these two seedings in Figure 3.

7

Figure 3- Seedings of a straight and a circle seeded event.

Other Factories
Now one issue that we have skipped over is how the program that reads in the swimmer
data decides which kind of event to generate. We finesse this here by simply calling the
two constructors directly:

events.addElement(new TimedFinalEvent("500free.txt", 6));
 events.addElement(new PrelimEvent("100free.txt", 6));

Clearly, this is an instance where an EventFactory may be needed to decide which kind of
event to generate. This revisits the simple factory we began the article with and have
discussed previously.

References
1. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley: Reading, MA, 1995.

