The Factory Down the Road
James W. Cooper
A few months ago, we talked about the basic Factory pattern. That pattern is widely used
all through the programming community, in any number of object oriented languages.

Briefly, this pattern is simply a class which returns one of a number of related classes
based on some input parameter.

For example, in Figure 1, we see a base class X that has two derived classes XY and XZ.

X
(frorn default)

(frorn default) (frorm default)
+0) +A 0]
+dolt() +dolt()

XFactory

(from default)
+xFactary()
+getClass(int): X

Froduces different instance of X
depending on value of argument

Figure1- A simpleclass X, itstwo derived classes and a ssimple Factory.

Then we write another class called X Factory which has a method

public X getX(int selector) {
switch (selector) {
case O:
return new XY();
case 1:
return new XZ();
}

This getX method returns an instance of XY or XZ depending on the value of some input
parameters, such as the smple selector argument we show here. Obviously the
computation that decides which of several of child classes to return can be as complex as
needed. The important point is that the Factory returns one of the classes but the calling
program never needs to know which one: they al have the same public methods but
different internal implementations. These ssmple factories can be useful in developing
programs that effectively conceal their implementation details inside classes and gain
more flexibility in the process.

The Factory Method Pattern

A more sophisticated and powerful kind of factory is described in the well-known Gang
of Four’s Factory Method Pattern. This pattern does not actually have a decision point
where one derived classis directly selected over another class. Instead, programs written
to this pattern define an abstract class that creates objects, but lets each subclass decide
which object to create. This sounds like areally powerful approach, but like many new
conceptsit’s alittle easier to understand with a concrete example.

After alittle thought, it occurred to me that a pretty simple example can be drawn from
the way swimmers are seeded into lanes in a swim meet. When swimmers compete in
multiple heats in a given event, they are sorted to compete from slowest in the early heats
to fastest in the last heat, and arranged within a heat with the fastest swvimmers in the
center lanes. Thisisreferred to as straight seeding.

Now, when swimmers swim in championships, they frequently swim the event twice.
During preliminaries everyone competes and the top 12 or 16 swimmers return to
compete against each other at finals. In order to make the preliminaries more equitable,
the top heats are circle seeded, so that the fastest three swimmers are in the center lanein
the fastest three heats, the second fastest three swimmers in the next to center lane in the
top three heats. Typicaly, swimmers swim the shorter events twice, but frequently they
swim the longer events only once at championships. One might think that thisis to
prevent exhaustion but those who have ever watched 10 heats of the 1650 yd freestyle
realize that it has the gripping excitement of watching paint dry, and the reason may well
be spectator fatigue.

OK, enough sports, how do we build some objects to implement this seeding scheme and
illustrate the Factory Method. First, let’s design an abstract Event class:

public abstract class Event ({
protected int numnlLanes;
protected Vector sw nmers;

public abstract Seedi ng get Seedi ng();
public abstract boolean isPrelin();
public abstract bool ean isFinal();
public abstract bool ean isTi nedFinal ();
}
This defines the methods simply without any necessity of filling in the methods. Then we

can derive concrete classes from the Event class, called PrelimEvent and

TimedFinalEvent. The only difference between these classes is that one returns one kind
of seeding and the other returns a different kind of seeding.

We also define an abstract Seeding class having the following methods:

public abstract class Seeding {
public abstract Enuneration getSw nmers();
public abstract int getCount();
public abstract int getHeats();

}

We derive two concrete seeding classes: StraightSeeding and CircleSeeding. The
PrelimEvent class will return an instance of CircleSeeding and the TimedFina Event class
will return an instance of StraightSeeding. Thus we see that we have two hierarchies: one
of Events and one of Seedings. We see these two hierarchies illustrated in Figure 2.

Seeding | Event
[from defaut) (frorm default] |
+ieading +Evert
FyedCoert +yetfeeding
+getibats sl
; ﬂets.?lﬂ??wem] +is Frelin

iz TieoFimal
Swwi mmer T
[from defaull)
—age

_C_I"'b StraightSeading
—first Hame

- frorn defaul] i
—heat i [| PrelimEvert TimedFinal Ewvernt
—ane (from default (fram defaul]
—lastHame : +PrelimEvent +TimedFinal Event E
—time retums Straig ; +get Seeding I i
Seading —— +getfeeding L] Seeding
+zFinal :5 ;""?'
! - ! : = Prelim
CircleSeeding "'!SFFE“"” i HisTimedFinal
[from defaul] HsTimedFinal

Figure 2 —The Seeding hierarchy and the Event hierarchy.

We can learn alot from the smple UML diagram in Figure 2. First, we see that Event is
an abstract class and has two concrete classes derived from it: PrelimEvent and
TimedFinalEvent. Then we see that Seeding is aso an abstract class and that it has
StraightSeeding derived from it. Since circle seeding reuses the methods of straight
seeding for heats after the first three, we derive CircleSeeding from StraightSeeding.
They are still both instances of the base Seeding class.

In the Event hierarchy, you will see that both derived Event classes contain a get Seeding
method. One of them returns an instance of StraightSeeding and the other an instance of
CircleSeeding. So you see, there isno rea factory decision point as we had in our smple
example. Instead, the decision as to which Event class to instantiate is the one that
determines which Seeding class will be instantiated.

While it looks like there is a one to one correspondence between the two class
hierarchies, there needn’t be. There could be many kinds of Events and only a few kinds
of Seeding that they use.

The Swimmer class

We haven't said much about the Swimmer class, except that it contains a name, club age,
seed time and place to put the heat and lane after seeding. The Event class reads in the
Swimmers from some database (afile in our example) and then passes that Vector to the
Seeding class when you call the getSeeding method for that event.

The Event Classes

We have seen the abstract base Event class above. In actual use, we use it to read in the
swimmer data (here from afile) and passit on to instances of the Swimmer class to parse

public abstract class Event
{
protected int numnlLanes;
protected Vector sw nmrers;
public Event(String filenanme, int |anes) {
nunLanes | anes;
SW nmer s new Vector();

InputFile f = new InputFile(fil enane);
String s = f.readLine();
while(s !'= null) {

Swi mer sw = new Swi nmer (S) ;

swi mmer s. addEl errent (sw) ;

s = f.readLine();

}

f.close();
}
public abstract Seedi ng get Seedi ng();
public abstract boolean isPrelin();
public abstract bool ean isFinal();
public abstract bool ean isTi nedFinal ();

}
Our PrelimEvent class just returns an instance of CircleSeeding:

public class PrelinEvent extends Event ({
//creates a prelimnary event which is circle seeded
public PrelinEvent(String filenanme, int |anes) {
super (fil ename, | anes);

public Seedi ng get Seeding() {
return new G rcl eSeedi ng(sw nmers, numnlLanes);
}

}
while the TimedFinal Event returns an instance of StraightSeeding:

public class Ti nedFi nal Event extends Event {
//creates an event that will be straight seeded
public Ti medFi nal Event (String filenane, int |anes) {
super (fil ename, | anes);

public Seedi ng get Seeding() {
return new Strai ght Seedi ng(swi mers, nuniLanes);
}

}

Straight Seeding

In actually writing this program, we'll discover that most of the work is done in straight
seeding. The changes for circle seeding are pretty minimal. So we instantiate our
StraightSeeding class and copy in the Vector of swimmers and the number of lanes

public Straight Seedi ng(Vector sw,

int lanes) {
Swi mMmers = sw;

nunianes = | anes;

count = sw. size();

cal cLaneOrder () ;

seed();

}

Then, as part of the constructor, we do the basic seeding.

protected void seed() {
/11 oads the asw array and sorts it
sort Upwar ds() ;

// number in | ast heat
int |astHeat = count % nunlanes;
if (lastHeat < 3)
| ast Heat = 3; //1ast heat nust have 3 or nore
int |astLanes = count - | astHeat;
nunHeats = count / nunlLanes;
if (lastLanes > 0)
nunHeat s++; //compute total nunber of heats
int heats = nunHeats;

//place heat and | ane in each swi mer's obj ect
int j =0;

//1oad fromfastest to sl owest

//so we start with |ast heat # and work downwards
for(int i = 0; i < lastLanes; i++) {

Swi mer sw = aswi];
sw. set Lane(l anes[j ++]);

/1 get each sw mer
//copy in |ane

sw. set Heat (heat s) ; // and heat
i f(j >= nuniLanes) {
heat s- -; /I next heat
i =0;
}
}
//Add in |ast partial heat
i f(j < nunLanes)
heat s- -;
j =0
for(int i = lastLanes-1; i<count; i++) {

Swi mer sw = aswi];
sw. set Lane(l anes[j ++]);
sw. set Heat (heat s) ;

//copy fromarray back into Vector

Swi mmers = new Vector ();
for(int i=0; i< count; i++)

Swi mer s. addEl enent (aswi]);

}

This makes the entire array of seeded Swimmers available when you call the
getSwimmers method.

Circle Seeding
The CircleSeeding classis derived from StraightSeeding, so it copies in the same data.
public class Circl eSeedi ng extends Straight Seedi ng {

public G rcl eSeedi ng(Vector sw, int |anes) {
super (sw, |anes); //also straight seeds
super. seed();

seed();

protected void seed() {
int circle;

/lcircle seed top heats if there are 2 or nore
if (nunmHeats >=2) {
i f(nunHeat s>=3)
circle = 3;
el se
circle = 2;
//this just replaces the top heat seeding
/land | eaves the rest untouched
int i= 0;
for (int j=0; j < numLanes; j++) {
for(int k=0; k < circle; k++) {
aswi].setLane(l anes[j]);
asw i ++] . set Heat (nunHeats - k);
}
}
}
}
}
Since the constructor calls the parent class constructor, it copies the swimmer vector and

lanes values. The, our call to super.seed() does the straight seeding. This smplifies
things, because we will always need to seed the remaining heats by straight seeding. Then
we seed the last 2 or 3 heats as shown above and we are done with that type of seeding as
well.

Our Seeding Program

No study of classes and data handling is complete unless we show a working example of
the resulting final program at work. In this example, we took alist of swimmersin the
500 yd freestyle and thelO0 yd freestyle and used them to build our TimeFinal Event and
PrelimEvent classes. Y ou can see the results of these two seedings in Figure 3.

E%%Factury Method Seeding Hi=E E%%Factury Method Seeding =l E3
SRR 13 2 Emily Fenn 459 54 - 500 Freel13 3 Kelly Harrigan 54.13 -
100 Freelq3 4 Kathryn Miller 501,35 RS 12 3 Torey Thelin 55.03

13 2 Melissa Sckolnik 501,58 11 3 Lindsay Mckenna 95.1

13 5 Sarah Bowman 502.44 132 4 Jen Pittrnan 55.67

131 Caitlin Klick 502.599 12 4 Annie Goldstein 55.82

13 6 Caitlin Healey 503.62 11 4 Kyla Burruss 56.04

12 3 Kim Richardson 604,32 13 2 Kaki Dudley 56.06

12 4 Beth Malinowski 50477 12 2 Lind=ay Woodward 56.3

12 2 Patricia Finnerty 50576 11 2 Margaret Ramsey 56.4

12 5 Carolyn Bowrman 505,79 ;i 13 5 KaleiWalker 56 .63 j

Figure 3- Seedings of a straight and a circle seeded event.

Other Factories

Now one issue that we have skipped over is how the program that reads in the swimmer
data decides which kind of event to generate. We finesse this here by simply calling the
two constructors directly:

event s. addEl ement (new Ti medFi nal Event ("500free.txt", 6));
event s. addEl ement (new Prel i mEvent ("100free.txt", 6));

Clearly, thisis an instance where an EventFactory may be needed to decide which kind of
event to generate. Thisrevisits the simple factory we began the article with and have
discussed previoudly.

References

1. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley: Reading, MA, 1995.

