USING EXCEPTIONS EFFECTIVELY
James W. Cooper

Recently | talked with Peter Haggar (1) about exceptions in Java and read some
comments by Ken Arnold that got me thinking about how little we actually do with
exceptions in Java programs. | have seen few examples of how to use exceptions
effectively in actual programs and the advice in most programming texts and articlesis
rather brief.

To review, the Java runtime system throws exceptions for a number of error conditions,
such as

No such file

Read past end of file
Input errors

Number format error
Array index out of bounds
Null pointer

There are, of course, dozens of other exceptions, especially in the Java Foundation
Classes.

Most input and output class methods throw exceptions, and if the method declares that it
throws an exception, the Java compiler requires you to catch that exception. The general
form of these exceptionsis

try{
//statenents..

catch (SoneException e)
/ /' handl e exception

}
finally
{

}
If one of the statements inside the try block fails and throws and exception, the code

inside the catch block is executed. Then, whether thereis afailure or not, code inside the
finally block is executed.

// code al ways execut ed

Y ou can also catch a number of different exceptions and deal with them in separate catch
blocks

try {
/! open some sort of file

}
cat ch(Fi | eNot FoundException fn)
{ //handle file not found

}

catch (ECFException e)
{ / /' handl e eof

}
catch (1 CException e)

{ /! handl e general 10 failure

}
It isimportant, however, that you start with the most specific, derived exception and end
with the most general exception.

Careless Exception Handling
Too often, we write exception handling code to be too simple -- if the compiler compels
us to catch an exception, we do the minimum we can get away with:

try {
f = new RandomAccessFil e(fname, “r”);

}
catch (1 CException e)
{Systemout.println(“Can’t open file”);}

And usually, printing out a message is the least useful thing you can do, especialy ina
GUI, windowing system, where the printed message may not show up anywhere anyone
will ever seeit. Worse yet, the effect of some of these exceptions is to make the program
unusable, so that it soon folds up its tents and steals away, without doing any useful
work.

With these objections in mind, | decided to write a program that uses a couple of
exceptions in the ways the designers of Java actually intended, and keeps running even
though the input data contain some pretty sloppy errors.

An Input Data File

Let’s assume that we have a set of data representing results of a swim meet that we need
to read into a program. We'll further suppose that these data were typed into afile
manually and therefore contain some typing errors. The data we start with are:

1 Amanda Mc Carthy 12 WCA 29.28
2 Jam e Fal co 12 HNHS 29. 80
3 Meaghan O Donnel | 12 EDST 30. 00
4 Geer G bbs 2 CDEV 30. 04
5 Rhi annon Jeffrey 11 ww 304
6 Sophi e Connol Iy 12 WAC

30. 05
7 Dana Hel yer 12 ARAC 30. 18
8 Lindsay Marotto 12 QOAK 30. 23
9 Sarah Treichel 12 Ww 30. 35
10 Ashl ey MEntee 12 RAC

These data are perfectly readable by a human being, but contain the kind of errors that
drive a computer program bananas. For example,

1. While we assume one first name and one last name, two swimmers have spacesin the
middle of their last names.

2. Thefourth swimmer has alower-case “L” instead of a one for thefirst digit of her
age.
The fifth swimmer has letter O’ s instead of zeroesin her time.

The sixth swimmer has an extra line feed between the club initials and her time.
The last swimmer’stime is missing

© g~ w

Thereis an extra blank line in the file after the last swimmer.

Most of these problems will generate exceptions if we just try to read in each line and
assign the data to a particular kid. We could catch those exceptions and throw up our
hands, or we could try to be alittle more thoughtful in figuring out how to recover from
these errors.

The Philosophy of Exceptions

Exceptions in Java are intended to handle unexpected occurrences. If you can and should
be testing for a condition (such as end-of file) directly n your code, then the exception is
the wrong way to handle the condition. Of course thisis a very general sort of rule and
can be interpreted in lots of ways. One thing you should readlize is that exceptions are
fairly expensive to throw and each thrown exception can reduce the performance of the
program. This suggests that creating lots of new kinds of exceptions within your class
hierarchy could be a bad idea. On the other hand, using exceptions that the system
provides or requiresis apretty good coding practice, and of course, in many instances,
enforced by the compiler.

A Kid Class

In order to handle this “dirty data,” we'll create aKid class that parses each line of the
file and creates a Kid object which contains as many of the data values as it can figure
out. The way to handle our data ingestion problem isto create a Kid object for each line
in the file and check each line in a separate method. If it can't find at least a first name,
last name and club, it setsthe legal state to false and skips over that line of data.

We are going to need to look ahead to the next token without committing ourselvesto its
use so we can see if the last name contains a space. So we derive the saveTokenizer class
from StringTokenizer. This class contains a pushToken method that puts a token back if it
isn’t the one we need.

Our basic Kid class constructor takes a line from the datafile and parsesit into the
names, age, club and time values:

public Kid(String s) {

t ok = new saveTokeni zer (s);

[/ must be at |east one

i f(tok. hasMoreEl enents()){
| egal = true; //Start as |egal

//discard |ine nunber

String | num = tok. next Token();
get Frnane() ; //read first nane
get Lnane() ; /11 ast name
get Age() ; // convert age

get A ub(); //read club
get Ti me() ; //convert tinme

}

el se
legal = false; //otherwi se not |egal kid
}
There is nothing specia about reading the first and last name — either they are there or
they aren’t:

private void getFrnane() {
i f(tok.hashoreEl ements())
fr_name = tok. next Token();
el se
| egal = fal se

private void getLnane() {
i f(tok.hasMoreEl ements())
| _nanme = tok.next Token();
el se
| egal = fal se
}

Looking Ahead to the Ages

However, when we read the age token, it is possible that the first token we encounter is
really part of alast name which contains an intervening space. If this token is not
numeric, we add it to the last name and get the next one for the age:

private void getAge() {
String agstring="";
try{
agstring = tok.next Token();
ki d_age = new I nteger(agstring).intValue();

}
cat ch(Nunber For mat Excepti on e) {
ki d_age = O; //no | egal age
/11 ook ahead for next token as | ega
testlnteger testAge = new testlnteger(tok. next Token());
if (testAge.islLegal ()) {
kid _age = testAge.tolnteger(); //age is in next token
| _nanme += agstring; //this is part of |ast nane
}
el se {
ki d_age = O; /1 no age
t ok. pushToken(); // push next token back
}
cat ch(NoSuchEl enent Excepti on n)
{legal = false;}
}

Here we see an excellent example of using the exception mechanism to catch a number
conversion error and how we can recover from it in the catch portion of the code. If the
token is not a number, the exception is triggered. If the following token is a number then
the age is set to that number and the previous token appended to the last name. If the

following token is not an integer then it is pushed back to be reread. This would occur if
he actual age were mistyped and not convertible to an integer.

This routine actually illustrates two ways of dealing with integer conversion errors. We
also create an instance of the testinteger class, which encapsulates the Integer class and
allows you to ask if the token it has just engulfed is an integer or not. Note that since the
Integer classisafinal classwe can't derive testinteger from it, but must encapsul ate
Integer and bring some of its methods to the surface of the enclosing class:

cl ass testlnteger {
//an integer class that tells you whether the current
/linteger is a |egal nunmber or not
/lsince Integer is a final class
//we encapsul ate an Integer and use a few of its nethods
private bool ean | egal
I nt eger test;

public testlnteger(String s) {
try{
test = new Integer(s);
| egal = true;

cat ch(Nunber For mat Exception e) ({

| egal = fal se
}
}
I L
publ i c bool ean isLegal () {
return | egal
}
I L
public int intValue() {
return test.intValue();
}

}

Keeping with the Times

There is nothing specia about how we get the club token. If there aren’t any tokens left,
the legal flag is set to false. The time method works much like the age conversion,
however, where we catch the float conversion exception and set the resulting time to
zero. We don't make the entire kid’s data illegal however, because we can keep the kid
and correct the time value later:

private void getTine() {
Float tim
try{
ti m= new Fl oat (t ok. next Token());
kid time = timfl oatVal ue();

cat ch (Nunber For mat Excepti on e) {
kid_time = 0;

cat ch(NoSuchEl enent Excepti on e)
{kid_time = 0;}

Note again that if we run out of tokensin the tokenizer we catch the NoSuchElement
exception and go on with a zero time being recorded.

Showing the Results
Our main program loads all of these Kid objects into a Table Data model

Ki dModel tnodel = new Ki dMvbdel (); //table data nodel
InputFile f = new InputFile("50free.txt");
String s = f.readLine();
while(s !'= null)

{

k = new Kid(s);

i f(k.isLegal())

t nodel . add(Kk) ;
s = f.readLine();

JTabl e table = new JTabl e(t nodel);

and displays them as shown below:
ga Exceptions E=l
Jamie Falco 12 HMHE 298
Meaghan |O'Dannell|12 EDST 300
Greer Gihhs 1] CDEY an.04
Rhiannon|Jeffrey 11 W n.a
Sophie Connolly (12 WA 0.0
Diana Helyver 12 ARAC 30.18
Lindsay |Marofto |12 CAK 30.23
Sarah Treichel |12 LR 30.34
Ashley McEntee |12 RAC 0.0

Note that we have successfully rejoined the two last names, have indicated the 4™ age as
zeroand the 5", 6th and 10" times as zero, meaning that they probaby require manual
intervention to correct.

Y ou may note that we introduced the InputFile class above. Thisisitself asimple class
thatencloses file 1/0 exceptions and we have discussed it previoudly (3).

Summary

Exceptions don’t always lead to rapid program exits. If they did we could just leave them
uncaught. Instead we' ve seen here how to use exception handling to improve error
checking and the robustness of your code in the face of faulty user input.

References

1. Peter Haggar, “Java Exception Handling” IBM e-Business and Networking Systems
Technical Converence, Las Vegas, September, 1998.

2. James Godling, Frank Yé€llin, and The Java Team, The Java Application Programmng
Interface, Vol. 1, Core Packages, Addison-Wesley, 1996.

3. James Cooper, Principles of Object-Oriented Programming in Java 1.1,
Ventana/Coriolis, 1997.

