HANDLING DATABASES MORE EFFECTIVELY
James W. Cooper

In our day-to-day work, we sometimes needed to store complicated relations between
datain relational databases. Databases are used more than any other kind of structurein
computing. You'll find them in payroll and employee records, in travel reservation
systems and all through product manufacturing and marketing.

A database is a series of tables of information in some sort of file structure that allows
you access these tables, select columns from them, sort them and select rows based on
various criteria. Some columns in most database tables have indexes associated with
them so they can be accessed as rapidly as possible. For example, suppose we decided to
compile a database of food prices for some things we buy regularly at 3 local markets.
We might just make alist of food items, their prices and the store where we found that
price. But, if we wanted to sort these prices by item or look at items by store to reduce
our shopping time, we might find it better to keep the food in one table, the storesin
another table and the prices at each store for each item in another table. We see the food
and store tablesin Figure 1.

Apples 1 | Stop and Shop

Oranges 2 | Village Market

Hamburger 3 | Wadbaum’'s

Butter

Milk

Cola

~N| O O B W N

Green beans

Figure 1 - The food and store tables from our groceries database.

Rather than keeping the prices with the stores or with the food, we make a third table
containing the price, the store key and the food item key. Being able to represent relations
between row of different tables using keysis characteristic of relational databases, as
shown in Figure 2.

Relkey | StoreKey | FoodKey | Price
1 1 1 0.27
2 2 1 0.29
3 3 1 0.33
4 1 2 0.36

Figure 2. Part of alonger relational table, showing the prices of each food in each store.

There is also a common language that all databases support for making queries about
these tables, called Structured Query Language, or SQL. Finally, nearly al database
vendors provide access to their databases through a common API called ODBC or Open
Database Connectivity.

Databases in Java

Now, in Javawe have a set of classes for connecting to databases using an interface
similar to ODBC, called JDBC. Y ou can connect to any database for which the
manufacturer has provided a JDBC connection class. These JDBC classes are available
for amost every database on the market. Some databases have direct connections using
JDBC and afew allow connection to ODBC driver using the JDBC-ODBC bridge class.
Then, you can pass standard SQL queries to the database without even knowing which
oneitis. (Of course there are some differencesin SQL dialects between databases, so this
isnot quite assimple aswe'd like.)

However, these database classes in the java.sgl package provide an excellent example of
aset of low level classes that interact in a convoluted manner, as shown in Figure 2.

ResultSet |
Metadata € 98t—— ResultSet

Database get

i -~ create P
Metadata Connection Statement

Create

Figure 3. - The main JDBC classes.

To connect to a database, you use an instance of the Connection class. Then to find out
the names of the database tables and fields, you need to get an instance of the

DatabaseM etadata class from the Connection. Then, to issue a query, you compose the
SQL query string and use the Connection to create a Statement class. Y ou execute the
statement, obtaining a ResultSet class, and to find out the names of the column rowsin
the ResultSet, you need to obtain an instance of the ResultsetM etadata class. Thus, it can
be quite difficult to juggle al of these classes and since most of the calls to their methods
throw Exceptions, the coding can be messy at least.

Fortunately, we can wrap the complexity of the JIDBC’s low level interface in some
higher-level classesto make JDBC easier to use. Wrapping complex classes to provide a

simpler interface is a description of the Fagade Design Pattern. This pattern allows you to
simplify this complexity by providing a smplified interface to subsystems. This
simplification may in some cases reduce the flexibility of the underlying classes, but
usually provides al the function needed for all but the most sophisticated users. These
users can still, of course, access the underlying classes and methods.

Building the Facade Classes
Let's consider how we connect to a database. We first must load the database driver:

try{d ass.forNanme(driver);} //load the Bridge driver
catch (Exception e)
{System out. println(e.get Message());}

and then use the Connection class to connect to a database. We also obtain the database
metadata for use in finding out more about the database:

try {con = DriverManager. get Connection(url);
dma =con. get Met aDat a() ; //get the nmeta data

catch (Exception e)
{System out. println(e.get Message());}

Then if we want to list the names of the tables in the database, we need to call the
getTables method on the database metadata class, which returns a ResultSet object. Then
we have to iterate through that object to get the list of names, making sure that we obtain
only user table names, and excluding internal system tables.

Vector tname = new Vector();

try {
results = new result Set (dnma. get Tabl es(cat al og,

null, "%, types));
}

catch (Exception e) {Systemout.println(e);}
while (results. hashMoreEl ements())
t nane. addEl enment (
resul ts. get Col umVal ue(" TABLE_NAME")) ;

This quickly becomes quite complex to manage, and we haven’t even issued any queries
yet.

One simplifying assumption we can make is that the exceptions that all these database
class methods throw do not need complex exception handling. For the most part, the
methods will work without error unless the network connection to the database fails.
Thus, we can wrap all of these methods in classes where we ssmply print out the
infrequent errors and take no further action.

This makes it possible to write two simple enclosing classes that contain al of the
significant methods of the Connection, ResultSet, Statement and Metadata classes. These
are the Database class:

C ass Dat abase {
publ i c Database(String driver)() /] constructor
public void Open(String url, String cat);
public String[] get Tabl eNames();
public String[] getColummNanmes(String table);
public String get Col umVal ue(String table,

String col utmNane) ;
public String getNextVal ue(String col umNane);
public resultSet Execute(String sql);
}
and the resultSet class:

cl ass result Set

{
public resultSet(ResultSet rset) //constructor
public String[] getMetaData();
publ i c bool ean hasMor eEl enent s();
public String[] nextEl enent();
public String get Col umVal ue(String col utmNane) ;
public String get Col umVal ue(int i);
}
These 2 classes constitutes a Fagade and are illustrated in Figure 4.
Database resultSet
\ \
ResultSet ,
Metadata get ResultSet
Execute
Database aet . S
Metadata 2 Connection ereate Statement
Create

Figure 4 - A Fagade which encloses the database classes in a smpler interface.

These simple classes alow us to write a program for opening a database, displaying its
table names, column names and contents, and running a simple SQL query on the
database.

The dbFrame.java program accesses a simple database containing food prices at 3 local
markets. It is shown in Figure 5.

[%g Database demonstration I =]

Tahles Caolumns Data

|FDDdKev Butter

FoodPrice Cola

Stores Green heans
Harmburger
hfilk;
Qranges

SELECT DISTINCTROWY FoodMame, Storebame, :_]

.| Run Gluerg.rl G!uiti
I3 f— ;|_|

Figure 5. The dbFrame program.

Clicking on atable name shows you the column names and clicking on a column name
shows you the contents of that column. If you click on Run Query, it displays the sorted
food prices by store for oranges, as shown in Figure 6.

E-_,%ﬂuery Result
FoodHame StoreMame Price

Qranges Village Market 0.2900

Cranges Stop and Shop 0.3600

Cranges Waldhaum's 0.4700

Figure 6- The results of asimple SQL query, sorting orange prices by store.

This program starts by connecting to the database and getting a list of the table names:

db = new Dat abase("sun. j dbc. odbc. JdbcCdbcDri ver");
db. Open("j dbc: odbc: Grocery prices", null);

String tnames[] = db. get Tabl eNames();

| oadLi st (Tabl es, tnanes);

Then clicking on one of the lists causes a simple query for table column names or
contents:

public void itenfstateChanged(ltenEvent e) {
//get list box selection
hj ect obj = e.getSource();
if (obj == Tabl es)
showCol ums() ;
if (obj == Col ums)
showDat a() ;

private void showCol ums() {
/1 di splay colum names
String cnames[] =
db. get Col umNanes(Tabl es. get Sel ectedltem());
| oadLi st (Col ums, cnames);

private void showbata() ({
/1 display columm contents
String col nane = Col utms. get Sel ectedltem();
String colval =
db. get Col umVal ue(Tabl es. get Sel ectedl tem(),
col name) ;
Dat a. renmoveAl | (); //clear list box
col val = db. get Next Val ue(Col utms. get Sel ectedltem());

whil e (col val .l ength()>0) {
//1oad |ist box
Dat a. add(col val) ;
col val = db. get Next Val ue(Col utms. get Sel ectedltem());

}
}

A Summary of the Facade

We' ve developed a Fagade pattern, which shields clients from complex database
subsystem components and provides a ssimpler programming interface for the general
user. However, it does not prevent the advanced user from going to the deeper, more
complex classes, when they find that necessary. In addition, we see that the Fagade
allows you to make changes in these underlying subsystems without requiring changesin
the client code, and reduces compilation dependencies. Y ou’'ll find the sample code,
including an Access database at this magazine' s web site. Y ou will also need the JDBC-
ODBC bridge from javasoft.sun.com, and may need the ODBC interface from
Microsoft’s site. Search for wx1350.exe. Needlessto say, this example is based on a PC
database, and won'’t run on other platforms.

References
1. George Reese, Database Programming with JDBC and Java, O’ Reilly, 1997

2. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley: Reading, MA, 1995.

3. J. W. Cooper, Principals of Object-Oriented Programming Using Java 1.1,
Coriolis/Ventana, 1997.

James W. Cooper is at work on his 13" book, Java Design Patterns, for Addison Wesley.

