
A Ticket to Success 
James W Cooper 

 

Robin: I recognize you. You are the picture that hangs at the end of the gallery. 

Roderic: In a bad light I am. 

Sometimes a problem presents itself in a way you don’t expect so that it is not obvious 
that a simple Java program is the quickest solution. For example, I belong to a 
community theater group that puts on one comic opera a year for 5 performances. There 
are not enough performances, to justify complicated ticketing software, but the problem 
of selling reserved seats and producing tickets at the lowest cost continues to bedevil us. 

Now it is perfectly possible to buy laser printer blank ticket forms. I bought ours from 
perforatedpaper.com. The problem is converting a list of seats in a theater into tickets 
and printing them out. One of the problems that we have to solve is that most theaters are 
not square: rows have different numbers of seats, and often the seat number system is not 
exactly linear. For example, many theaters number their prime center block of seats with 
3 digits, and the less desirable side blocks with single digits, with the odd seats on one 
side and the even seats on the other. So it is not productive to spend time on a analytic 
algorithm for computing seat numbers. Instead, we need to start with a list of seats.  

Figure 1 shows a section of the seat layout for the auditorium our company is using. 

 
Figure 1 – A portion of the seat layout. 

As you may deduce from the borders, this layout was typed into an Excel spreadsheet. It 
is probably possible to write a program to read from the Excel file in Java, perhaps using 
JDBC, but it is far easier to simpler export the data into a comma-separated text file and 
write a program to read it in. 

A portion of that file looks like this: 



M,20,18,16,14,12,10,8,6,4,2, ,101,102,103,104,105,106,107, 
L,20,18,16,14,12,10,8,6,4,2, ,101,102,103,104,105,106,107, 
K,20,18,16,14,12,10,8,6,4,2, ,101,102,103,104,105,106,107,  
 
where we represent aisles and missing seats with a blank instead of a seat number. 

We can design a Java class to represent a seat (and whether it is sold) simply enough: 
/**Represents a single seat*/ 
public class Seat { 
 //the seat location 
 private String row, number; 
  
 //number of customer ordering seat 
 private int customerKey; 
  
 public Seat(String row, String number) { 
  this.number = number.trim(); 
  this.row = row; 
 } 
 /**returns true is this is a blank seat 
  * Occurs when rows are different lengths 
  * and for aisles.*/ 
 public boolean isBlank() { 
  return number.length() < 1; 
 } 
   
 /**Returns the seat number. 
  * @return String 
  */ 
 public String getNumber() { 
  if (isBlank()) 
   return "."; 
  else{ 
   while(number.length() <3) { 
    number += " "; 
   } 
   return number; 
  } 
 } 
Similarly, we can design a SeatRow class to present rows of seats as a Vector of seat 
objects. 
/**represents a row of seats*/ 
public class SeatRow { 
 private Vector seats; //list of seats in row 
 private String rowName; 
  
 public SeatRow(String rowName) { 
  seats = new Vector(); 
  this.rowName =rowName; 
 } 
 //add a seat to the row 
 public void addSeat(Seat st) { 
  seats.addElement( st); 
 } 
 public String getRowName() { 



  return rowName; 
 } 
 //get an iterator for the seats in the row 
 public Iterator getIterator() { 
  return seats.iterator() ; 
 } 
} 

Reading the Seating Plan 
It is of course quite simple to read in the seat rows from this file using a StringTokenizer: 
 rowList = new Vector(); 
 seatList = new Vector(); 
 try { 
  InputFile inf = new InputFile("seating.txt"); 
  String srow = inf.readLine(); 
  while (srow != null) { 
   StringTokenizer tok = new StringTokenizer(srow, ","); 
   String rowName = tok.nextToken(); 
 
   sRow = new SeatRow(rowName); 
   while (tok.hasMoreTokens()) { 
    String snum = tok.nextToken(); 
    String tnum = snum; 
    if (snum.trim().length() < 1) { 
     tnum = "."; 
    } 
    Seat seat = new Seat(rowName, snum); 
    sRow.addSeat(seat); 
   } 
   rowList.add(sRow); 
   srow = inf.readLine(); 
  } 
 } catch (IOException e) { 
  System.out.println(e.getMessage()); 
 } 
But, how do we print the tickets? This is the hard part in Java, because printing has the 
somewhat deserved reputation for innate complexity. 

Printing in Java 
Since Java 1.2, printing has become a good deal more friendly, however, and it is this 
newer set of classes we’ll use to print out our tickets. In Java 1.2, you can print a set of 
pages all having the same format, as we’ll be doing here, or you can establish a Book 
class where different pages have different formats. 

In experimenting with the printing classes I found a couple of little quirks that took a 
little time to straighten out, and the code I show is the result of these experiments. 

You need to provide a class for printing a page of tickets which implements the Printable 
interface. This interface, has the one method: 
int print(Graphics graphics, PageFormat pageFormat, int pageIndex); 
 



If you look at this interface, you see that the graphics surface you will be drawing to is 
supplied, along with an object describing the page format. But the most important thing 
that is passed to your printing class is the page number. You have to be prepared to print 
any page requested, and in any order. You must return PAGE_EXISTS if that page can 
be printed and NO_SUCH_PAGE if it cannot be printed. Without going into the 
formatting details of a single ticket, here is the loop that prints out 20 tickets on a page: 
//called by printing system 
 //note that this simplistic example only prints page 0 
 public int print(Graphics gr, PageFormat pageFormat, int page) 
  throws PrinterException { 
  if (page == 0) { 
   this.fmt = pageFormat; 
   this.g = (Graphics2D) gr; 
 
   printPage(); 
   return PAGE_EXISTS; 
  } else 
   return NO_SUCH_PAGE; 
 } 
 //print all the seats on one page 
 private void printPage() { 
  Iterator iter = seatList.iterator(); 
  int count = 0; 
 
  while (iter.hasNext() && count < 20) { 
   String seat = (String) iter.next(); 
   printSeat(seat);  //print one seat 
   count++; 
  } 
 } 
The details of printing an actually ticket will include actual positioning and font 
information and can be as messy as any other printing or graphics program. Here is a 
portion of the code for printing a ticket: 
private void printSeat(String seat) { 
 //draw ticket borders in light gray 
 g.setColor(Color.LIGHT_GRAY); 
 g.drawRect(xoff, yoff, (int) (3.9 * INCH), INCH); 
 //print seat info in black 
 g.setColor(Color.BLACK); 
  

//print seat number in Arial (sans serif) 
 Font arial = new Font("Arial", Font.PLAIN , 14); 
 g.setFont( arial); 
 g.drawString(seat, xoff +3 * INCH+INCH/4, yoff + INCH / 2); 
 
 //print title of show in script 
 Font script = new Font("Brush script", Font.BOLD, 24); 
 g.setFont( script); 
 g.drawString( "Ruddigore", xoff+INCH/2, yoff+ INCH/4); 
 
The final ticket is shown in Figure 2. 



 
Figure 2 – A single ticket printed by our program. 

Setting up Printing 
Now that we’ve shown you how to print a single ticket, we need to explain how you set 
up the whole system. You have to define a PageFormat and a Paper type. In addition, it 
seems empirically that printing works most reliably if you do not assume any defaults for 
any of these values. 

You start by getting the current printer job from the static PrinterJob method: 
//get the current print job 
 pJob = PrinterJob.getPrinterJob(); 
 
Then, you can display the printer dialog box, if you want to allow the user to change from 
the default printer, as shown in Figure 3.  

 
Figure 3 – The printer dialog box. 

If the user selects Cancel from that dialog box, the printDIalog method returns false and 
the printing does not take place. 
if (pJob.printDialog()) { 
 print(v); 
 try { 
  pJob.print(); 



 } catch (PrinterException e) { 
  System.out.println(e.getMessage()); 
 } 
} 
 
The “pixel resolution” on a page is 1/72 of an inch, so we define the constant: 
private final int INCH = 72; 
 
To set up the printer page, we set the page and paper format as we show below: 
//set up a format 
PageFormat fmt = pJob.defaultPage();  
//define the orientation 
fmt.setOrientation(PageFormat.PORTRAIT); 
//set the paper size 
Paper paper = fmt.getPaper(); 
paper.setSize(8.5 * INCH, 11 * INCH); 
//define the full area as imageable 
paper.setImageableArea(0 * INCH, 0 * INCH, 8.5 * INCH, 11 * INCH); 
//set this paper as the current format 
fmt.setPaper(paper); 
  
Then, if you like, you can display the page format dialog: 
 //show the page format dialog for the heck of it 
 pJob.pageDialog( fmt); 
 
which looks like that shown in Figure 4. 

 



Figure 4 – The page format dialog box. 

Then, the final thing you must do is to create an instance of the object implementing the 
Printable interface and pass it and the format information to the printer job: 
 //create a printable page 
 pJob.setPrintable(new TicketPrinter(v), fmt); 
 
This begins the printing process and the pubic print method of the TicketPrinter object us 
called as needed. 

Displaying Our Results 
Now, suppose we want to display this seating chart in Java. We can use the JTable 
component to display the matrix of seats. However, since we have a matrix of seats and 
not-seats (aisles and missing seats) we need to display them differently. We do this by 
telling the Jtable about 2 renderers, one for real seats and one for labels for the columns 
that are not actual seats: 
JScrollPane sp = new JScrollPane(table); 
table.setPreferredScrollableViewportSize(new Dimension(820,500)); 
//set renderer for non seats 
table.setDefaultRenderer(String.class, new LabelRenderer()); 
//set renderer for seats 
table.setDefaultRenderer(Seat.class, new SeatRenderer()); 
 
 
The SeatRenderer displays the seat number if there is one, and if there is not, displays a 
blue background for aisles and missing seats: 
public class SeatRenderer extends DefaultTableCellRenderer { 
 protected Font bold, plain; 
  
 public SeatRenderer() { 
  super(); 
  setOpaque(true); 
  setBackground(Color.white); 
  setForeground(Color.black); 
  bold = new Font("SansSerif", Font.BOLD, 10); 
  plain = new Font("SansSerif", Font.PLAIN, 10); 
  setFont(plain); 
 } 
//-------------------- 
 public Component getTableCellRendererComponent( 
  JTable jt, 
  Object value, 
  boolean isSelected, 
  boolean hasFocus, 
  int row, 
  int column) { 
  Seat seat = (Seat) value; 
  String number = seat.getNumber(); 
  setBackground(Color.WHITE); 
  //for missing seats and aisles  

//set the background to light blue 
  if (seat.getNumber().trim().equals(".")) { 



   setBackground(new Color(0x80, 0xff, 0xff)); 
   number = ""; 
  } 
  setText(number); 
  return this; 
 } 
 
} 
The LabelRenderer just sets the background to gray and displays no text. It is used for the 
left hand column of row letters. 
public class LabelRenderer extends SeatRenderer { 
 public LabelRenderer() { 
  super(); 
 } 
 //---------- 
 public Component getTableCellRendererComponent( 
  JTable jt, 
  Object value, 
  boolean isSelected, 
  boolean hasFocus, 
  int row, 
  int column) { 
  setFont(bold); 
  setText((String) value); 
  setBackground(Color.lightGray); 
  return this; 
 } 
} 
The final display is shown in Figure 6. 

 
Figure 5 – A display of the seat plan using a JTable. 



On with the show! 
We have seen how to read and print out theater tickets and how to display the results on 
the screen. Wouldn’t it be great if we could keep track of ticket sales as well? Well, that 
must be part of the second act, but after this Act I Finale, perhaps you return after the 
interval to see what additional plot elements we’ve stirred up. 

 


